
Programming Lego Robots
using NBC

(Version 1.0, June 11, 2007)

(Requires NBC 1.0.1.b30 or greater)

by Ross Crawford

with revisions by John Hansen

- 2 -

Preface

The Lego MindStorms NXT robot is a wonderful new toy from which a wide variety of robots can be
constructed, that can be programmed to do all sorts of complicated tasks. Unfortunately, the software that comes
with the robot, although visually attractive and much more powerful than the RIS software for the RCX, is still
somewhat limited in its functionality. To unleash the full power of your robot, you need a different programming
environment. NBC is a programming language, written by John Hansen, which is especially designed for the
Lego robots. If you have never written a program before, don't worry. NBC is really easy to use and this tutorial
will tell you all about it. Actually, programming robots in NBC is a lot easier than programming a normal
computer, so this is a chance to become a programmer in an easy way.

To make writing programs even easier, there is the Bricx Command Center. This utility helps you to write your
programs, to send them to the robot, and to start and stop the robot. Bricx Command Center works almost like a
text processor, but with some extras. This tutorial will use Bricx Command Center (version 3.3.7.15 or higher) as
programming environment. You can download it for free from the web at the address

http://bricxcc.sourceforge.net/

Bricx Command Center runs on Windows PC’s (95, 98, ME, NT, 2K, XP). The language NBC can also be
downloaded from the web at address

http://bricxcc.sourceforge.net/nbc/

Acknowledgements
I would like to thank John Hansen for developing NBC. Also many thanks to Mark Overmars for writing his
NQC tutorial, on which this is heavily based.

- 3 -

Contents

Preface ___ 2
Acknowledgements__ 2

Contents __ 3

I. Writing your first program __ 5
Building a robot __ 5
Starting Bricx Command Center __ 5
Writing the program ___ 6
Running the program __ 7
Errors in your program ___ 8
Changing the speed __ 9
Adding comments ___ 9
Summary ___ 10

II. Using variables ___ 11
Moving in different ways __ 11
Displaying results on the screen ___ 13
Random numbers __ 13
Summary ___ 14

III. Flow Control __ 15
The cmp and tst statements ___ 15
The brcmp and brtst statements__ 16
The jmp statement__ 16
Loops – repeating code __ 17
Summary ___ 19

IV. Sensors ___ 20
Waiting for a sensor __ 20
Acting on a touch sensor ___ 21
Light sensors __ 21
Summary ___ 22

V. Making music___ 24
Playing tones__ 24
Playing files __ 24
Creating your own sound files __ 25
Summary ___ 26

VI. Threads and subroutines ___ 27
Threads __ 27
Subroutines ___ 27
Defining macros ___ 28
Summary ___ 29

VII. More about motors ___ 30
Stopping gently __ 30
Synchronising motors ___ 30
Regulating the motor speed___ 30
Rotating a specific angle ___ 31
More advanced motor control ___ 31
Summary ___ 31

VIII. More about sensors __ 32
Sensor type ___ 32
Sensor mode __ 32
Sound sensor __ 33

- 4 -

Motor as a rotation sensor __ 33
Ultrasonic sensor___ 34
More advanced sensor control __ 34
Putting it all together__ 35
Summary ___ 36

IX. Parallel threads __ 37
A wrong program __ 37
Using mutexes___ 37
Summary ___ 38

X. Communication between robots __ 39
Communication with other NXT bricks ___ 39
Communication with a PC ___ 39
Communication with other Bluetooth devices __ 39
Summary ___ 39

XI. More commands__ 40
System calls __ 40
System clock __ 40
Arrays ___ 41
Type declarations __ 42
Type aliases___ 43
Summary ___ 44

- 5 -

I. Writing your first program

In this chapter I will show you how to write an extremely simple program. We are going to program a robot to
move forwards for 4 seconds, then backwards for another 4 seconds, and then stop. Not very spectacular but it
will introduce you to the basic idea of programming. And it will show you how easy this is. But before we can
write a program, we first need a robot.

Building a robot
The robot we will use throughout this tutorial is the “Tribot”, the instructions for which are included with your
NXT set. If you are new to LEGO robotics, I recommend doing the tutorials that come with the LEGO software,
to get acquainted with what your NXT can do. Your robot should look like this:

(Note that you may already have added sensors and a grabber – if so, you should remove them temporarily, as
some of the examples may not work correctly with them attached.)

Starting Bricx Command Center
We write our programs using Bricx Command Center. Start it by double clicking on the icon BricxCC. (I assume
you already installed Bricx Command Center. If not, download it from the web site (see the preface), and install
it in any directory you like.) The program will ask you where to locate the robot. Switch the robot on and press
OK. The program will (most likely) automatically find the robot. Now the user interface appears as shown below
(without a window).

- 6 -

The interface looks like a standard text editor, with the usual menus, and buttons to open and save files, print
files, edit files, etc. But there are also some special menus for compiling and downloading programs to the robot
and for getting information from the robot. You can ignore these for the moment.

We are going to write a new program. So press the New File button to create a new, empty window.

Writing the program
Now type in the following program:

thread main
 OnFwd(OUT_B,100)
 OnFwd(OUT_C,100)
 wait 4000
 OnRev(OUT_BC,100)
 wait 4000
 Off(OUT_BC)
 exit
endt

It might look a bit complicated at first, so let us analyze it. Programs in NBC consist of threads. Our program has
just one thread, named main. Each program needs to have a thread called main which is the one that will be
executed by the robot. You will learn more about threads in Chapter V. A thread consists of a number of
commands, also called statements. Each statement takes a single line, so a task looks in general as follows:

thread main
 statement1
 statement2
endt

Our program has seven statements. Let us look at them one at the time:

OnFwd(OUT_B,100)

- 7 -

This statement tells the robot to start output B, that is, the motor connected to the output labeled B on the NXT,
to move forwards. The 100 specifies the percentage of maximum speed, so it will move with maximum speed.

OnFwd(OUT_C,100)
Same statement but now we start motor C. After these two statements, both motors are running, and the robot
moves forwards.

wait 4000
Now it is time to wait for a while. This statement tells us to wait for 4 seconds. The argument gives the number
of milliseconds, or 1/1000 of a second. So you can very precisely tell the program how long to wait. So for 4
seconds, the program does nothing and the robot continues to move forwards.

OnRev(OUT_BC,100)
The robot has now moved far enough so we tell it to move in reverse direction, that is, backwards. Note that we
can set both motors at once using OUT_BC as argument. We could also have combined the first two statements
this way. We could also use OnFwd(OUT_BC,-100).

wait 4000
Again we wait for 4 seconds.

Off(OUT_BC)
And finally we switch both motors off.

exit
This statement tells the NXT this thread has finished. While not required at the end of threads, it is
recommended. Note also that it can appear elsewhere in the thread as well.

That is the whole program. It moves both motors forwards for 4 seconds, then backwards for 4 seconds, and
finally switches them off.

You probably noticed the colors when typing in the program. They appear automatically. The colors and styles
used by the editor when it performs syntax highlighting are customizable.

Running the program
Once you have written a program, it needs to be compiled (that is, changed into code that the robot can
understand and execute) and sent to the robot using either the USB cable or a Bluetooth device (called
“downloading” the program). Before you can do that, you need to name the program, which you do by saving it
to your hard drive. When you save it, make sure the file extension is “.nbc”, this tells Bricx Command Center
that it is an NBC program.

- 8 -

Once it has been saved, you can compile and download it simply by clicking the download button. Assuming
you made no errors when typing in the program, it will correctly compile and be downloaded. (If there are errors
in your program you will be notified; see below.)

Now you can run your program. To do this, go to “Software Files” on your NXT, and look for “1-simple”, then
use the orange NXT button to run it. Or alternatively, you can run it from Bricx Command Center, by pressing
the green run button on your window (see the figure above). Does the robot do what you expected? If not, the
wires are probably connected incorrectly.

Errors in your program
When typing in programs there is a reasonable chance that you make some errors. The compiler notices the
errors and reports them to you at the bottom of the window, like in the following figure:

It automatically selects the first error (we mistyped the name of the motor). When there are more errors, you can
click on the error messages to go to them. Note that often errors at the beginning of the program cause other
errors at other places. So better only correct the first few errors and then compile the program again.

- 9 -

**** Also note that the syntax highlighting helps a lot in avoiding errors. For example, on the last line we typed
Of rather than Off. Because this is an unknown command it is not highlighted, and you can spot the error even
before you compile.

There are also errors that are not found by the compiler. If we had typed OUT_B this would have gone unnoticed
because that motor exists (even though we do not use it in the robot). If your robot exhibits unexpected behavior,
there is most likely something wrong in your program.

Changing the speed
As you noticed, the robot moved rather fast. Default the robot moves as fast as it can. To change the speed, just
use a different value in the OnFwd command. The power is a number between 0 and 100, and specifies the
percentage of maximum power. Here is a new version of our program in which the robot moves slow:

thread main
 OnFwd(OUT_BC,25)
 wait 4000
 OnRev(OUT_BC,25)
 wait 4000
 Off(OUT_BC)
 exit
endt

In this example, you can see that the speed value, and the wait value are both repeated. If you needed to change
these values, you would have to change them in several places, and you might miss one. So in NQC you can
define constant values as shown in the following program.

#define SPEED 25
#define MOVE_TIME 4000

thread main
 OnFwd(OUT_BC, SPEED)
 wait MOVE_TIME
 OnRev(OUT_BC, SPEED)
 wait MOVE_TIME
 Off(OUT_BC)
 exit
endt

Now if you need to change the speed (for example), you only need to change it in one place.

Adding comments
To make your program even more readable, it is good to add some comments to it. Whenever you put // on a
line, the rest of that line is ignored and can be used for comments. A long comment can be put between /* and
*/. Comments are syntax highlighted in the Bricx Command Center. The full program could look as follows:

- 10 -

/* Forward and reverse

 by Ross Crawford

This program makes the robot go forward and backward
*/

#define SPEED 25
#define MOVE_TIME 4000

thread main
 OnFwd(OUT_BC, SPEED) // Drive forward
 wait MOVE_TIME // Wait for 4 seconds
 OnRev(OUT_BC, SPEED) // Drive backward
 wait MOVE_TIME // Wait for 4 seconds
 Off(OUT_BC) // Stop moving
 exit // Exit
endt

Summary
In this chapter you wrote your first program in NBC, using Bricx Command Center. You should now know how
to type in a program, how to download it to the robot and how to let the robot execute the program. Bricx
Command Center can do many more things. To find out about them, read the documentation that comes with it.
This tutorial will primarily deal with the language NBC and only mention features of Bricx Command Center
when you really need them.

You also learned some important aspects of the language NBC. First of all, you learned that each program has
one thread named main that is always executed by the robot. Also you learned the four most important motor
commands: OnFwd, OnRev and Off, and about the wait and exit statement. Finally, you learned about how to
use constants to make program-wide changes easier, and comments to explain what your code does.

- 11 -

II. Using variables
Variables form a very important aspect of every programming language. Variables are memory locations in
which we can store a value. We can use that value at different places and we can change it. Let me describe the
use of variables using an example.

Moving in different ways
Assume we want to adapt the above program in such a way that the robot doesn’t return as fast as it went
forward. This can be achieved by making the speed value smaller for the return journey. But how can we do
this? SPEED is a constant and constants cannot be changed. We need a variable instead. Variables can easily be
defined in NBC. Here is a new program.

#define MOVE_TIME 4000
#define SPEED 100
#define DECREMENT 25

dseg segment
 Speed byte
dseg ends

thread main
 set Speed SPEED
 OnFwd(OUT_BC, Speed)
 wait MOVE_TIME
 sub Speed, Speed, DECREMENT
 OnRev(OUT_BC, Speed)
 wait MOVE_TIME
 Off(OUT_BC)
 exit
endt

We have introduced the variable Speed into the program. Every variable in your program must be declared in a
data segment. You can have as many data segments as you want, and they can be pretty much anywhere in your
program. All variables in NBC have global scope – they are accessible from any code in any thread.

Data segments start with the segment statement, and end with the ends statement. Each segment must be
named, the name on the segment and ends statements must match.

So let's explain the new statements in this program.

dseg segment
This statement specifies the start of a data segment called “dseg”. In our program, it is the only data segment and
contains only a single variable.

Speed byte
This statement declares the variable “Speed” as type “byte”. Variable names must start with a letter but can
contain digits and the underscore sign. No other symbols are allowed. (The same applied to constants, thread
names, etc.)

dseg ends
This statement specifies the end of the “dseg” data segment.

set Speed, SPEED
This statement assigns the value of SPEED (the constant defined earlier) to the variable Speed. Note that this can
also be done in the declaration of the variable, by adding the initial value after the variable type, eg: Speed
byte SPEED.

sub Speed, Speed, DECREMENT
This subtracts the value DECREMENT from the value currently stored in the variable Speed, and stores the
result back to that same variable.

- 12 -

When you run this program, your robot should travel forward at full speed for the specified time, then reverse for
the same time at a slower speed.

Besides subtracting values from a variable we can also multiply a variable with a number, subtract and divide.
(Note that for division the result is rounded to the nearest integer.) You can also add one variable to the other,
and write down more complicated expressions. Here are some examples:

dseg segment
 aaa byte
 bbb byte
 ccc byte
dseg ends

thread main
 set aaa, 10 // aaa is now equal to 10
 mul bbb, 20, 5 // bbb is now equal to 100
 mov ccc, bbb // ccc is now equal to 100
 div ccc, ccc, aaa // ccc is now equal to 10
 add ccc, ccc, 5 // ccc is now equal to 15

 exit
endt

Now let's look at the new code more closely.

set aaa, 10
We’ve seen this one before, but I just wanted to point out that the second argument to set can only be a
constant. This is different from the mov statement below.

mul bbb, 20, 5
This statement multiplies 20 by 5, and assigns the result to the variable bbb. The 2nd and 3rd arguments can be
either constants or other variables.

mov ccc, bbb
This statement assigns the value of the variable bbb to the variable ccc. Unlike set, the 2nd argument of mov
can be either a constant or a variable.

div ccc, ccc, aaa
This statement divides ccc by aaa and assigns the result back to ccc. Note that it returns integers only – any
remainder is truncated.

add ccc, ccc, 5
This statement add 5 to ccc.

- 13 -

Displaying results on the screen
As you can see, if perform these commands, the final value of ccc should be 15. But how do we check it? The
easiest way is to display the result on the NXT screen. This is fairly simple – there is a system call available to
do it. The following program demonstrates it:

dseg segment
 aaa byte
 bbb byte
 ccc byte
dseg ends

thread main
 set aaa, 10 // aaa is now equal to 10
 mul bbb, 20, 5 // bbb is now equal to 100
 mov ccc, bbb // ccc is now equal to 100
 div ccc, ccc, aaa // ccc is now equal to 10
 add ccc, ccc, 5 // ccc is now equal to 15

 NumOut(10, LCD_LINE7, ccc)
 wait 2000 // wait so you get to see it!

 exit
endt

This is fairly self-explanatory, but here is an explanation of the important parts.

NumOut(10, LCD_LINE7, ccc)
This statement converts the value ccc to a string, then calls the system function DrawText to display the string
on the screen. The value of ccc should be displayed near the lower left of the screen.

wait 2000
We’ve seen this before too – it is here simply to pause and allow you to see the result. If it wasn’t here, the
program would exit immediately, and the NXT menu would overwrite the value you just displayed too fast for
you to see it!

Random numbers
In all the above programs we defined exactly what the robot was supposed to do. But things get a lot more
interesting when the robot is going to do things that we don’t know. We want some randomness in the motions.
In NBC you can create random numbers. The following program uses this to pick a random speed when it
reverses.

- 14 -

#define MOVE_TIME 4000
#define SPEED 100
#define DECREMENT 25

dseg segment
 Speed byte
 wRandom byte
dseg ends

thread main
 set Speed SPEED
 OnFwd(OUT_BC, Speed)
 wait MOVE_TIME
 Random(wRandom,30)
 add wRandom, wRandom, 10
 sub Speed, Speed, wRandom
 OnRev(OUT_BC, Speed)
 wait MOVE_TIME
 Off(OUT_BC)
 exit
endt

The program is basically the same as the one above, but instead of just subtracting 25 from Speed, it uses a
random number between 10 and 40. Let’s look at how it does this:

Random(wRandom,30)
This statement generates a random integer between 0 and 29 (inclusive), and returns the result in wRandom.
Note that the result will always be less then the value of the 2nd parameter.

add wRandom, wRandom, 10
This statement adds 10 to the result, so it will now be between 10 and 39.

sub Speed, Speed, wRandom
This statement subtracts the result from the current value of Speed, ready to change the random speed in the
following OnRev statement.

Summary
In this chapter you learned about the use of variables. Variables are very useful, but they are restricted to only
integer values. But for many robot tasks this is good enough.

You also learned how to display a value on the NXT screen. This technique can be very useful for debugging
more complex programs.

Finally, you learned how to create random numbers, such that you can give the robot unpredictable behavior.

- 15 -

III. Flow Control
In the previous chapters we saw many ways to manipulate variables. But all the statements we’ve looked at so
far just get executed in order, which is great for some things, but often we need to make decisions about what to
do based on different conditions. These require a way to compare variables, and do different things based on the
result of the comparison.

The cmp and tst statements
Sometimes you want to just record the result of a comparison so you can use that result later in the program. This
can easily be accomplished using the cmp and tst statements. Let’s look at how we use these in a program.

dseg segment
 aaa byte
 bbb byte
 ccc byte
 wRandom byte
dseg ends

thread main
 set aaa, 10
 Random(wRandom,20)
 mov bbb, wRandom
 cmp GT, ccc, bbb, aaa

 NumOut(10, 8, bbb)
 NumOut(50, 8, ccc)

 wait 2000

 exit
endt

This program should be fairly familiar – it is based on the one in the previous chapter. However, there is one new
statement: let’s have a look at it.

cmp GT, ccc, bbb, aaa
This statement compares bbb with aaa using the comparison GT, which means “greater than”. Then, the result
is stored in ccc. So, if bbb is greater than aaa, the value 1 (which is how the NXT firmware represents “true”)
is stored in ccc, otherwise the ccc is assigned the value 0.

So this does exactly what we wanted – it stores the result of the comparison in a variable for later. The lines
following the comparison write the values of bbb and ccc to the display so you can see how the comparison
works. Go ahead, run the program a few times, and verify that the value of ccc is set correctly depending on the
random value of bbb.

So what about the tst statement? Well it’s really just the poorer brother of cmp, it works the same except it
only has 3 parameters, and assumes a value of zero for the fourth parameter. So the following statements would
do the same thing:

 cmp GT, ccc, bbb, 0
 tst GT, ccc, bbb

There are other types of comparison that can be performed with cmp and tst, too. Here is the list:

EQ equal to
LT smaller than
LTEQ smaller than or equal to
GT larger than
GTEQ larger than or equal to
NEQ not equal to

- 16 -

The brcmp and brtst statements
So, we can store the result of a comparison for later using cmp or tst. And we can display it on the screen. But
how can we actually use it to do something? Generally, a robot will want to do something different depending on
the result of the test, and this can be accomplished with brcmp and brtst.

In NBC, all program branch statements require a label. The label is just a string of characters followed by a
colon. A label can be on a line by itself or at the start of a line containing an NBC statement. Let’s have a look
at an example:

dseg segment
 aaa byte
 bbb byte
 wRandom byte
dseg ends

thread main
 set aaa, 10
 Random(wRandom,20)
 mov bbb, wRandom

 NumOut(10, 8, bbb)

 brcmp GT, Bigger, bbb, aaa
 TextOut(50, 8, 'small')
 brcmp LTEQ, Delay, bbb, aaa
Bigger:
 TextOut(50, 8, 'BIG')
Delay:
 wait 2000

 exit
endt

Again, this is fairly similar to the last program, but instead of using cmp to store the comparison result, we use
brcmp to execute some “conditional” code. Let’s analyse the 2 new statements:

brcmp GT, Bigger, bbb, aaa
This looks very similar to the cmp statement in the last program doesn’t it? In fact it is, and the exact same
comparison is performed, but instead of storing the result, it is used to determine whether or not to skip program
execution to the label “Bigger”, which is defined below. If the comparison is true, the program skips, otherwise
it continues with the next statement, which displays the string “small”.

Bigger:
This is a label, and is the target of the brcmp statement. If the comparison is true, program execution will skip
to the first statement following this label, which displays the string “BIG”.

So the program will display the value of bbb, and either “BIG” or “small” depending whether or not it’s bigger
than aaa.

The brtst statement is, again, similar to brcmp, except that the 4th parameter is assumed to be zero.

The jmp statement
Sometimes you need to do an unconditional branch, that is, skip some code no matter what. This can be
accomplished with the jmp statement. It is very simple; you just specify the label you want to skip to.

One common use of unconditional branches is in an “if-then-else” type of situation. You use brcmp or brtst as
the “if”, jumping to a label to execute the “then” code. If the comparison is false, you execute the “else” code,
immediately below the conditional branch. But at the end of that code, you want to skip over the “then” code,
because you don’t want to execute that if the test is false. So you must add a label after the “then” code, and skip
to it unconditionally at the end of the “else” code. Let’s look at an example:

- 17 -

#define MOVE_TIME 4000
#define SPEED 100
#define DECREMENT 25

dseg segment
 Speed byte
 wRandom byte
dseg ends

thread main
 set Speed SPEED
 OnFwd(OUT_BC, Speed)
 wait MOVE_TIME
 sub Speed, Speed, DECREMENT
 Random(wRandom,2)
 brtst EQ, Then, wRandom
Else:
 OnRev(OUT_BC, Speed)
 jmp EndIf
Then:
 OnFwd(OUT_BC, Speed)
EndIf:
 wait MOVE_TIME
 Off(OUT_BC)
 exit
endt

Here is an example “if-then-else”. In this example, our robot should go forward at full speed for 4 seconds, then
go either forwards or reverse at slower speed for another 4 seconds, depending on a random number. Let’s
analyze it:

brtst EQ, Then, wRandom
This is the conditional branch, or “if” statement. If wRandom is equal to zero, program execution will skip to the
“Then” label.

Else:
This is a label identifying the “Else” clause, that is the code which is executed if the comparison is false. Note
that this label is in fact unnecessary, as no branch statement uses it as a target. It was included to highlight the
similarity to an if-then-else construct, and also to demonstrate that it is OK to put labels in your code which are
not the target of branch statements. So if the test is false, the OnRev statement will be executed, and the robot
will back up.

jmp EndIf
This unconditional branch causes program execution to skip to “Endif”, thus avoiding execution of the “Then”
clause.

Then:
The “Then” label is the target of the brtst statement above, so if the test is true, program execution will skip to
this point, thus missing the “Else” clause, and the robot will continue forwards, due to the OnFwd statement.

EndIf:
The “Endif” label is the target of the unconditional branch at the end of the “Else” clause.

If you run this program a few times, your robot should go forward about half the time and backward about half
the time.

Loops – repeating code
You can make your robot turn by stopping or reversing the direction of one of the two motors. Here is an
example. Type it in, save it, download it to your robot and let it run. It should drive a bit and then make a 90-
degree right turn.

- 18 -

#define MOVE_TIME 800
#define TURN_TIME 200

thread main
 OnFwd(OUT_BC,100)
 wait MOVE_TIME
 OnRev(OUT_C,100)
 wait TURN_TIME
 Off(OUT_BC)
endt

You might have to try some slightly different numbers than 200 for the value of TURN_TIME to make a precise
90-degree turn. This depends on the type of surface on which the robot runs

Let us now try to write a program that makes the robot drive in a square. Going in a square means: driving
forwards, turning 90 degrees, driving forwards again, turning 90 degrees, etc. We could repeat the above piece of
code four times but this can be done a lot easier with a loop. Loops in NBC make use of the same branch
statements and we used earlier.

#define MOVE_TIME 800
#define TURN_TIME 200

dseg segment
 SquareCount byte 4
dseg ends

thread main

SquareLoop:
 OnFwd(OUT_BC,100)
 wait MOVE_TIME
 OnRev(OUT_C,100)
 wait TURN_TIME
 sub SquareCount, SquareCount, 1
 brtst GT, SquareLoop, SquareCount

 Off(OUT_BC)
endt

This program declares a variable SquareCount, and initializes its value to 4. Then it executes the same code
we introduced in the previous example, to move forward, then turn 90 degrees. After that, it subtracts 1 from
SquareCount, and then compares the new value with zero. If SquareCount is greater than zero, it branches
to the label SquareLoop, thus going back and re-executing the movement commands again. After 4 times
through the “loop”, SquareCount reaches zero, and the motors are switched off before exiting the program.

So the robot should drive around the sides of a square (approximately), and return to where it started.

As a final example, let us make the robot drive 10 times in a square. Here is the program:

- 19 -

#define MOVE_TIME 800
#define TURN_TIME 200

dseg segment
 SquareCount byte 4
 RepeatCount byte 10
dseg ends

thread main

RepeatLoop:
 set SquareCount, 4

SquareLoop:
 OnFwd(OUT_BC,100)
 wait MOVE_TIME
 OnRev(OUT_C,100)
 wait TURN_TIME
 sub SquareCount, SquareCount, 1
 brtst GT, SquareLoop, SquareCount

 sub RepeatCount, RepeatCount, 1
 brtst GT, RepeatLoop, RepeatCount

 Off(OUT_BC)
endt

There is now one loop inside the other. We call these “nested” loops. You can nest loops as much as you like.
Notice that each loop is indented – this is not necessary, but helps to make the program easier to read. Note also
that although SquareCount is initialized in the variable declaration, it needs to be reset to 4 before each time
through the SquareLoop. This is necessary because the previous execution of that loop leaves the value at
zero.

Summary
In this chapter you learned about how to compare values in your program and store the result, using the tst and
cmp statements. You learned how to conditionally skip code using labels and the brtst and brcmp statements,
and unconditionally skip code using the jmp statement. Finally, you learned how to use the brtst, brcmp and
jmp statements to write if-then-else clauses and loops.

- 20 -

IV. Sensors

One of the nice aspects of the Lego robots is that you can connect sensors to them and that you can make the
robot react to the sensors. Before I can show how to do this we must change the robot a bit by adding a sensor.
To do this, you will need to follow the instructions in the software that came with your NXT. You need to build
the “bumper” for you tribot, according to those instructions, and your robot should now look like this:

Connect the sensor to input 1 on the NXT.

Waiting for a sensor
Let us start with a very simple program in which the robot drives forwards until it hits something. Here it is:

dseg segment
 Switch sword 0
dseg ends

thread main
 SetSensorTouch(IN_1)
 OnFwd(OUT_BC,100)

CheckSensor:
 ReadSensor(IN_1,Switch)
 brtst EQ, CheckSensor, Switch

 Off(OUT_BC)
endt

Let’s look at the important lines:

SetSensorTouch(IN_1)
This tells the NXT that the sensor connected to the input IN_1 will be a touch sensor.

ReadSensor(IN_1,Switch)
This reads the current value of the sensor, translates it to an appropriate value depending on the sensor type
selected, and returns it in the 2nd parameter. So in our program, Switch will contain either 1 or 0 (true/false) after
this call, depending whether the touch sensor is pressed or not.

- 21 -

brtst EQ, CheckSensor, Switch
This causes the program to loop until the value of Switch is not equal to zero. So it will just keep checking the
touch sensor and looping until something activates it. As soon as the touch sensor is pressed (by the robot
running into something), the loop is exited, and the robot stops.

Acting on a touch sensor
Let us now try to make the robot avoid obstacles. Whenever the robot hits an object, we let it move back a bit,
make a turn, and then continue. Here is the program:

dseg segment
 Switch sword 0
dseg ends

thread main
 SetSensorTouch(IN_1
 OnFwd(OUT_BC,100)

CheckSensor:
 ReadSensor(IN_1,Switch)
 brtst EQ, CheckSensor, Switch
 OnRev(OUT_BC,100)
 wait 300
 OnFwd(OUT_B,100)
 wait 300
 OnFwd(OUT_BC,100)
 jmp CheckSensor

endt

As in the previous example, we first indicate the type of the sensor. Next the robot starts moving forwards. In the
infinite while loop we constantly test whether the sensor is touched and, if so, move back for 1/3 of a second,
turn right for 1/3 of a second, and then continue forwards again.

Light sensors
Besides a touch sensor, you also get a light sensor with your MindStorms system. The light sensor measures the
amount of light in a particular direction. The light sensor also emits light. In this way it is possible to point the
light sensor in a particular direction and make a distinction between the intensity of the object in that direction.
This is in particular useful when trying to make a robot follow a line on the floor. This is what we are going to
do in the next example. We first need to attach the light sensor to the robot. To do that, follow the instructions in
the program supplied with your NXT. Make sure it is connected to input 3. Your robot should now look like this:

- 22 -

We also need the race track that comes with your NXT kit (This big piece of paper with the black track on it.)
The idea now is that the robot makes sure that the light sensor stays above the track. Whenever the intensity of
the light goes up, the light sensor is off the track and we need to adapt the direction. Here is a very simple
program for this that only works if we travel around the track in clockwise direction.

#define THRESHOLD 60

dseg segment
 Level sword 0
dseg ends

thread main
 SetSensorLight(IN_3)
 OnFwd(OUT_BC,100)

CheckSensor:
 ReadSensor(IN_3,Level)
 brcmp LT, CheckSensor, Level, THRESHOLD
 OnRev(OUT_B,50)

FindLine:
 ReadSensor(IN_3,Level)
 brcmp GTEQ, FindLine, Level, THRESHOLD

 OnFwd(OUT_BC,100)
 jmp CheckSensor

endt

The program first indicates that sensor 3 is a light sensor. Next it sets the robot to move forwards and goes into
an infinite loop. Whenever the light value is bigger than 60 (we use a constant here such that this can be adapted
easily, because it depends a lot on the surrounding light) we reverse one motor and use a second loop to wait till
we are on the track again.

As you will see when you execute the program, the motion is not very smooth. Try adding a wait 100
command after the OnRev command to make the robot move better. Note that the program does not work for
moving counter-clockwise. To enable motion along arbitrary path a much more complicated program is required.

Summary
In this chapter you have seen how to work with touch sensors and light sensors.

- 23 -

I recommend you to write a number of programs yourself at his stage. You have all the ingredients to give your
robots pretty complicated behavior now. For example, try to make a robot that stays within an area indicated by a
thick black border line on the floor.

- 24 -

V. Making music
The NXT has a built-in speaker that can make sounds and even play simple pieces of music. This is in particular
useful when you want to make the NXT tell you that something is happening. But it can also be funny to have
the robot make music while it runs around.

Playing tones
For basic music, NBC has the command PlayTone(). It has two arguments. The first is the frequency, and the
second the duration (in ticks of 1/1000th of a second, like in the wait command). There are 5 octaves of tones
defined in the NBC API, from C3 to B7, but not all those values produce a useful note.

thread main
 PlayTone(TONE_C5,500)
 wait 500
 PlayTone(TONE_D5,500)
 wait 500
 PlayTone(TONE_E5,500)
 wait 500
 PlayTone(TONE_D5,500)
 wait 500
 PlayTone(TONE_C5,1000)
 wait 1000
endt

You might wonder why there are wait commands between each call to PlayTone. The reason is that the
command that plays the sound does not wait for it to finish. It immediately executes the next command. The
NXT has a little buffer in which it can store some sounds but after a while this buffer get full and sounds get lost.
This is not so serious for sounds but it is very important for music, as we will see below.

Note that the arguments to PlayTone()can be either constants or variables. So you could write a loop in your
program and increment or decrement either the frequency or the duration using the math opcodes discussed in
Chapter II.

dseg segment
 freq word TONE_C3
 loopCount byte 4
dseg ends

#define DURATION 500

thread main
 DoLoop:
 PlayTone(freq, DURATION)
 wait DURATION
 mul freq, freq, 2
 sub loopCount, loopCount, 1
 brtst GT, DoLoop, loopCount
 // the loop is finished, so play our last tone
 PlayTone(TONE_C5, DURATION*2)
 wait DURATION*2
 exit
endt

You can also create pieces of music very easily using the Brick Piano that is part of the Bricx Command Center.

Playing files
As well as playing tones, NBC has the command PlayFile(), which allows you to play sound samples and
NXT melody files. It has one argument, being the name of the file to play. You can view what sound files and
melody files are available on the NXT using the NXT Explorer tool included with Bricx Command Center.
Choosing NXT Explorer from the Tools menu opens a window like this:

- 25 -

By choosing “NXT Sound files” from the combo list, you can display only the sound files available on the NXT
and on your PC. The 4 files displayed are already on your NXT when the standard firmware is installed. We can
write a very simple program to play the Woops.rso file like this:

dseg segment
 MyFile byte[] 'Woops.rso'
dseg ends

thread main
 PlayFile(MyFile)
 wait 1000
endt

Again, you can see we need a wait command after the PlayFile() command, for the same reason as before
– PlayFile() does not wait for the sample to finish before returning control to your program. Also, note that
you must include the complete filename, but it is not case sensitive. If the file cannot be found, the command
will be silently ignored. You can also simply pass the filename directly to the PlayFile() command without
creating a variable first.

To play a melody file you would use the same sort of code, except that melody files normally have a ".rmd" file
extension rather than ".rso". The NXT does not come with any melody files already on the brick, but you can
easily create them either by using the Brick Piano in BricxCC or by using the MIDI conversion tool in BricxCC.

Creating your own sound files
The built in sounds are fine for a lot of things, but what if you want to create your own custom sounds? BricxCC
also includes a tool to convert Windows WAV files to the RSO format used by NXT. Choosing “Sound
Conversion…” from the Tools menu opens a window similar to this:

- 26 -

You can use the Select Files button to select any WAV file on your PC, then use the Directory button to choose
where to save the converted file. Then click “Convert” to convert the file – it will be saved in the directory you
chose, with the same name as the original WAV file, but with an extension of RSO instead of WAV. The
Resample options can reduce the size of the resulting file, but may also reduce the quality of the resulting sound.
But if memory is tight, you should experiment with these options to find the best compromise. The result of the
conversion will be displayed in the Messages window at the bottom of the dialog.

After you have created your sound file, you can transfer it to the NXT using the NXT Explorer tool, and your
program will then be able to play it exactly as we did earlier with the built-in file. Downloading a sound file
from your computer to the NXT using the NXT Explorer tool is accomplished by simply dragging the file from
the PC window and dropping it on the NXT window.

Another source for sound files is the standard NXT software. It comes with many different sounds. Using NXT
Explorer in BricxCC you can browse on your PC to the Program Files\LEGO Software\LEGO MINDSTORMS
NXT\engine\Sounds directory and drag sound files to the NXT. Sound files can use a lot of memory on your
NXT so be careful how many you use. Melody files are usually much smaller than sound files so they make a
nice alternative to use in your program.

Summary
In this chapter you learned how to let the NXT make basic music and play sound or melody files. Finally, you
learned how to create your own sound files or melody files and download them to your NXT.

- 27 -

VI. Threads and subroutines

Up to now all our programs consisted of just one thread. But NBC programs can have multiple threads. It is also
possible to put pieces of code in so-called subroutines that you can use at different places in your program. Using
threads and subroutines makes your programs easier to understand and more compact. In this chapter we will
look at the various possibilities.

Threads
As explained earlier, an NBC program consists of at least 1 thread. Each thread has a name. One thread should
have the name main, and this thread will be executed first. The other threads will only be executed when a
running thread tells them to be executed. There are 2 ways to start another thread – using the precedes and
follows commands, or the exitto command.

Let me demonstrate the use of threads. Say we want to take the square-moving robot from chapter III, and have
it play music while it moves. We need to do 2 things simultaneously, and that is exactly what threads allow you
to do. So what we can do is have 1 thread controlling the motors, and another thread playing the music, then get
them to execute simultaneously. Here is how we do that:

#define MOVE_TIME 800
#define TURN_TIME 200

thread main
 precedes move_square, play_music
endt

thread move_square
SquareLoop:
 OnFwd(OUT_BC,100)
 wait MOVE_TIME
 OnRev(OUT_C,100)
 wait TURN_TIME
 jmp SquareLoop
endt

thread play_music
MusicLoop:
 PlayTone(TONE_C5,500)
 wait 500
 PlayTone(TONE_D5,500)
 wait 500
 PlayTone(TONE_E5,500)
 wait 500
 PlayTone(TONE_D5,500)
 wait 500
 jmp MusicLoop
endt

The main thread just starts both other tasks, then exits immediately – its job is done. Thread move_square
moves the robot forever in squares. Thread play_music just plays the same sequence of 4 tones over and over.

It is very important to remember that tasks that you start are running at the same moment. This can lead to
unexpected results. Chapter IX explains these problems in detail and gives solutions for them.

Subroutines
Sometimes you need the same piece of code at multiple places in your program. In this case you can put the
piece of code in a subroutine and give it a name. Now you can execute this piece of code by simply calling its
name from within a thread. Let us look at an example.

- 28 -

#define TURN_TIME 340

thread main
 OnFwd(OUT_BC,100)
 wait 1000
 call turn_around
 wait 2000
 call turn_around
 wait 1000
 call turn_around
 Off(OUT_BC)
endt

subroutine turn_around
 OnRev(OUT_C,50)
 wait TURN_TIME
 OnFwd(OUT_BC,100)
 return
ends

In this program we have defined a subroutine that makes the robot rotate around its center. The main thread calls
the subroutine three times. The subroutine is declared between the subroutine and ends keywords, and
must be named. It can have return commands anywhere within it, but should always have one at the end. It is
executed using the call command, and after it has completed, control automatically returns to the next
command after the call that invoked it.

Some warnings are in place here. Subroutines are a bit weird. First, subroutines cannot have parameters, like
other commands. Subroutines can be called from different threads but this is not encouraged. It very easily leads
to problems because the same subroutine might actually be run twice at the same moment by different tasks. This
tends to give unwanted effects. So, unless you know precisely what you are doing, don’t call a subroutine from
different threads!

NBC (or actually the NXT) allows for at most 255 threads and subroutines combined.

Defining macros
There is yet another way to give small pieces of code a name. You can define macros in NBC. We have seen
before that we can define constants, using #define, by giving them a name. But actually we can define any
piece of code. Here is the same program again but now using a macro for turning around.

#define TURN_TIME 340
#define turn_around \
 OnRev(OUT_C,50) \
 wait TURN_TIME \
 OnFwd(OUT_BC,100)

thread main
 OnFwd(OUT_BC,100)
 wait 1000
 turn_around
 wait 2000
 turn_around
 wait 1000
 turn_around
 Off(OUT_BC)
endt

After the #define statement the word turn_around stands for the text after it. Now wherever you type
turn_around, this is replaced by this text. Note that multiple commands can be included, but each except the
last must be followed by the backslash (\) character.

Define statements are actually a lot more powerful. They can have arguments. For example, we can put the time
to turn as an argument in the statement. Here is an example in which we define four macros; one to move

- 29 -

forwards, one to move backwards, one to turn left and one to turn right. Each has two arguments: the power and
the time.

#define turn_right(pwr,time) \
 OnRev(OUT_C,pwr) \

 wait time \
 OnFwd(OUT_B,pwr)

#define turn_left(pwr,time) \
 OnRev(OUT_B,pwr) \
 wait time \
 OnFwd(OUT_C,pwr)

#define forwards(pwr,time) \
 OnFwd(OUT_BC,pwr) \
 wait time

#define backwards(pwr,time) \
 OnRev(OUT_BC,pwr) \
 wait time

thread main
 forwards(50,2000)
 turn_left(100,850)
 forwards(100,1000)
 backwards(100,2000)
 forwards(100,1000)
 turn_right(100,850)
 forwards(50,2000)
 Off(OUT_BC)
endt

It is very useful to define such macros. It makes your code more compact and readable. Also, you can more
easily change your code when you e.g. change the connections to the motors.

Summary
In this chapter you saw the use of threads, subroutines and macros. They have different uses. Threads normally
run at the same time and take care of different things that have to be done at the same time. Subroutines are
useful when larger pieces of code must be used at different places in the same thread. Finally macros are very
useful for small pieces of code that must be used a different places. They can also have parameters, making them
even more useful.

Now that you have worked through the chapters up to here, you have all the knowledge you need to make your
robot do complicated things. The other chapters in this tutorial teach you about other things that are only
important in certain applications.

- 30 -

VII. More about motors
There are a number of additional motor commands that you can use to control the motors more precisely. In this
chapter we discuss them.

Stopping gently
When you use the Off() command, the motor stops immediately, using the brake. In NBC it is also possible to
stop the motors in a more gentle way, not using the brake. For this you use the Coast() command. Sometimes
this is better for your robot task. Here is an example. First the robot stops using the brakes; next without using
the brakes. Note the difference. (Actually the difference is very small for this particular robot. But it makes a big
difference for some other robots.)

thread main
 OnFwd(OUT_BC,100)
 wait 200
 Off(OUT_BC)
 wait 100
 OnFwd(OUT_BC,100)
 wait 200
 Coast(OUT_BC)
endt

Synchronising motors
One big problem with robots that have a separate motor for each wheel is that driving in a perfectly straight line
can be difficult. If the motors run at just slightly different speeds, your robot will tend to drive in a large circle
when you want it to go straight. The NXT is able to overcome this problem by using motors with rotation
sensors built in, allowing you to synchronise them. You can use the OnFwdReg() and OnRevReg() commands
to easily do this:

thread main
 OnFwdReg(OUT_BC, 100, OUT_REGMODE_SYNC)
 wait 2000
 Off(OUT_BC)
 wait 100
 OnRevReg(OUT_BC, 100, OUT_REGMODE_SYNC)
 wait 2000
 Coast(OUT_BC)
endt

The NXT will ensure that the motors remain synchronized; if one of them encounters something that causes it to
slow down, the other will slow down to compensate.

Regulating the motor speed
Another problem with robot motors is that setting a fixed power doesn’t mean the speed is fixed – the robot will
slow down if the load on it is increased. The special NXT motors provide a solution to this as well, using the
same functions as in the previous section:

thread main
 OnFwdReg(OUT_BC, 100, OUT_REGMODE_SPEED)
 wait 2000
 Off(OUT_BC)
 wait 100
 OnRevReg(OUT_BC, 100, OUT_REGMODE_SPEED)
 wait 2000
 Coast(OUT_BC)
endt

The NXT will automatically adjust the power to the motors to attempt to keep the speed constant. Note that there
are limitations to this; if the load is increased too much, the NXT will not be able to supply enough power to the
motors and they will slow down.

- 31 -

Note also that the OUT_REGMODE parameters can be combined, eg: OnFwdReg(OUT_BC, 100,
OUT_REGMODE_SYNC+OUT_REGMODE_SPEED) and the NXT will keep the motors synchronized as well as
attempting to keep their speed constant.

Rotating a specific angle
Another function often required in robots is the ability to rotate a motor by a specific angle. The special NXT
motors also make this fairly simple:

thread main
 RotateMotor(OUT_A, 100, 90)
endt

This code will rotate motor A by 90 degrees, at 100% power. You can specify an angle greater than 360, and it
will turn more than a full turn, if you specify a negative angle it will turn in reverse. There are a couple of things
to remember about this function though:

1. Unlike most motor control commands so far, you can only specify a single motor in this command –
you cannot rotate 2 motors with a single RotateMotor() command;

2. Depending on the power parameter, the motor may initially overshoot the desired angle, and will toggle
direction until it returns to the correct position.

This function uses a PID (proportional, integral, differential) algorithm to control the motor angle, and for those
who know what they’re doing, the PID parameters can be adjusted using the advanced motor control functions
described below.

More advanced motor control
The above functions are high-level macros to make using common features easy. But NBC has low-level motor
control functions, and if your robot has advanced requirements, you may need to use these functions. I will
provide only a brief description of these functions here – for more detailed information, please refer to the NBC
manual.

The setout command sets one or more output fields of a motor on one or more ports to the value specified by
the coupled input arguments.

setout port/portlist, fieldid1, value1, …, fieldidN, valueN

setout OUT_A, OutputMode, OUT_MODE_MOTORON, RunState, OUT_RUNSTATE_RUNNING,
Power, 75

The getout command reads a value from an output field of a sensor on a port and writes the value to its dest
output argument.

getout dest, port, fieldID

getout myVar, OUT_A, OutputMode

Output Field Identifiers
UpdateFlags, OutputMode, Power, ActualSpeed, TachoCount, TachoLimit, RunState, TurnRatio,
RegMode, Overload, RegPValue, RegIValue, RegDValue, BlockTachoCount, RotationCount

Summary
In this chapter you learned about the extra high-level motor commands that are available: Coast() that stops the
motor gently, OnFwdReg() and OnRevReg() that allow you to regulate your motor speed and
synchronization, and RotateMotor() that allows you to control the angle of the motor shaft. You also learned
about the low-level commands for controlling and interrogating motor parameters.

- 32 -

VIII. More about sensors

In Chapter IV we discussed the basic aspects of using sensors. But there is a lot more you can do with sensors. In
this chapter we will discuss the difference between sensor mode and sensor type, we will see how to use the
sound sensor and ultrasonic sensor included with your NXT.

Sensor type
The SetSensorTouch()and SetSensorLight() command that we saw before does actually three things: it
sets the type of the sensor, and it sets the mode in which the sensor operates, then resets the sensor. By setting
the mode and type of the sensor separately, you can control the behavior of the sensor more precisely, which is
useful for particular applications.

The type of the sensor is set with the command SetSensorType().Setting the type sensor is in particular
important to indicate whether the sensor needs power (like e.g. for the light of the light sensor). I know of no
uses for setting a sensor to a different type than it actually is. Here is a list of valid sensor types:

 IN_TYPE_NO_SENSOR – No sensor attached.
 IN_TYPE_SWITCH – Standard LEGO NXT touch sensor attached.
 IN_TYPE_TEMPERATURE – Standard LEGO NXT temperature sensor attached.
 IN_TYPE_REFLECTION – Standard LEGO NXT touch sensor attached.
 IN_TYPE_ANGLE – Standard LEGO NXT rotation sensor attached.
 IN_TYPE_LIGHT_ACTIVE – Standard LEGO NXT light sensor attached – lamp will be activated.
 IN_TYPE_LIGHT_INACTIVE – Standard LEGO NXT light sensor attached – lamp will not be

activated.
 IN_TYPE_SOUND_DB – Standard LEGO NXT sound sensor attached – will measure dB.
 IN_TYPE_SOUND_DBA – Standard LEGO NXT sound sensor attached – will measure dBa.
 IN_TYPE_CUSTOM – Currently unused.
 IN_TYPE_LOWSPEED – I2C sensor attached – unpowered.
 IN_TYPE_LOWSPEED_9V – I2C sensor attached – powered (9V).
 IN_TYPE_HISPEED – Currently unused.

Sensor mode
The mode of the sensor is set with the command SetSensorMode(). There are ten different modes. The most
important one is IN_MODE_RAW. In this mode, the value you get when using ReadSensor()is the raw value
produced by the sensor. What it means depends on the actual sensor. For example, for a touch sensor, when the
sensor is not pushed the value is close to 1023. When it is fully pushed, it is close to 180. When the sensor is a
light sensor, the value ranges from about 420 (very light) to 270 (very dark). This can give a much more precise
value than using the SetSensorLight() command. Here is a list of sensor scaling modes:

 IN_MODE_RAW – No scaling of the raw value.
 IN_MODE_BOOLEAN – Value scaled to 1 (TRUE) or 0 (FALSE). Readings are FALSE if raw value

exceeds 55% of total range; readings are TRUE if raw value is less than 45% of total range.
 IN_MODE_TRANSITIONCNT – Value returned as number of transitions between TRUE and FALSE.
 IN_MODE_PERIODCOUNTER – Value returned as number of transitions from FALSE to TRUE,

then back to FALSE.
 IN_MODE_PCTFULLSCALE – Value scaled as percentage of full scale reading for configured sensor

type.
 IN_MODE_CELSIUS – Scale TEMPERATURE reading to degrees Celsius.
 IN_MODE_FAHRENHEIT – Scale TEMPERATURE reading to degrees Fahrenheit.
 IN_MODE_ANGLESTEP – Value returned as count of ticks on RCX-style rotation sensor.
 IN_MODE_SLOPEMASK
 IN_MODE_MODEMASK

- 33 -

There are two other interesting modes: IN_MODE_TRANSITIONCNT and IN_MODE_PERIODCOUNTER. They
count transitions, that is, changes from a low to a high raw value or opposite. For example, when you touch a
touch sensor this causes a transition from high to low raw value. When you release it you get a transition the
other direction. When you set the sensor mode to IN_MODE_PERIODCOUNTER, only transitions from low to high
are counted. So each touch and release of the touch sensor counts for one. When you set the sensor mode to
IN_MODE_TRANSITIONCNT, both transitions are counted. So each touch and release of the touch sensor counts
for two. So you can use this to count how often a touch sensor is pushed. Or you can use it in combination with a
light sensor to count how often a (strong) lamp is switched on and off. Of course, when you are counting things,
you should be able to set the counter back to 0. For this you use the command ClearSensor(). It clears the
counter for the indicated sensor.

Sound sensor
The NXT set also includes a sound sensor. This allows you to program your robot to do things based on how
loud the ambient sound is. Note that it only provides a total volume sample; it doesn’t provide any sound
processing abilities.

Let us look at an example. The following program uses the sound sensor to steer the robot. If you clap quickly
twice the robot moves forwards. It you clap once it stops moving.

dseg segment
 Count sword 0
dseg ends

thread main
 SetSensorType(IN_2, IN_TYPE_SOUND_DB)
 SetSensorMode(IN_2, IN_MODE_PERIODCOUNTER)
 ResetSensor(IN_2)

Forever:
 ClearSensor(IN_2)
CheckCount:
 ReadSensor(IN_2, Count)
 brtst EQ, CheckCount, Count
 wait 500
 ReadSensor(IN_2, Count)
 brcmp EQ, StopIt, Count, 1
 OnFwd(OUT_BC,100)
 jmp Forever
StopIt:
 Off(OUT_BC)
 jmp Forever
endt

This code also demonstrates the use of a non-standard sensor mode. Normally we would use the
SetSensorSound() to initialize the sound sensor, but in this case, we only want to measure volume transitions,
so we use the period counter mode. Note that we first set the type of the sensor and then the mode. It seems that
this is essential because changing the type also affects the mode. Note also the use of the ResetSensor()
command. This is required after you set the type or the mode.

Motor as a rotation sensor
As well as using the feedback functions of the motor for speed control and synchronization, it can be used as a
stand-alone rotation sensor by connecting it to one of the sensor inputs. The downside is that it requires quite a
large force to turn it, as you also have to turn the motor and associated gearing. But for certain applications, this
may be useful.

To be completed.

- 34 -

Ultrasonic sensor
The last sensor included with the NXT set is an ultrasonic sensor. This is a sensor that sends out ultrasonic
pulses, and measures how long it takes for their reflection to return, thus giving an approximate measure of
distance to the nearest object.

This sensor is different from the ones we’ve used so far, in that it uses the digital I2C sensor interface. This
means it isn’t possible to communicate with it using the standard ReadSensor() command; a separate
ReadSensorUS() command is provided instead. Apart from that, using it is pretty much the same as any other
sensor. Here is an example that lets the robot run forwards until it gets near to an object and then makes a 90
degree turn to the right.

dseg segment
 Distance sword 0
dseg ends

thread main
 SetSensorUltrasonic(IN_4)
 OnFwd(OUT_BC,100)

Forever:
 ReadSensorUS(IN_4, Distance)
 brcmp GT, Forever, Distance, 30
 Off(OUT_B)
 wait 200
 OnFwd(OUT_BC,100)
 jmp Forever
endt

A disadvantage of the technique is that it only works in one direction. You probably still need touch sensors at
the sides to avoid collisions there. But the technique is very useful for robots that must drive around in mazes.

More advanced sensor control
The above functions are high-level macros to make using common features easy. But NBC has low-level sensor
control functions, and if your robot has advanced requirements, you may need to use these functions. I will
provide only a brief description of these functions here – for more detailed information, please refer to the NBC
manual.

The setin command sets an input field of a sensor on a port to the value specified in its first input argument.

setin value, port, fieldID

setin IN_TYPE_SWITCH, IN_1, Type
setin IN_MODE_BOOLEAN, IN_1, InputMode

The getin command reads a value from an input field of a sensor on a port and writes the value to its dest
output argument.

getin dest, port, fieldID

getout myVar, IN_1, ScaledValue

Input Field Identifiers
Type, InputMode, RawValue, NormalizedValue, ScaledValue, InvalidData

- 35 -

Putting it all together
Here is a project from the LEGO NXT software that uses everything you’ve learned in the previous 2 chapters
about motors and sensors. It assumes you have completed building the Tribot; it should now look something like
this:

- 36 -

This program will wait until a ball is placed in front of the Tribot, when it will move forward until it touches the
ball then stop. When you clap your hands, it will close the grabber, turn around, and return to the starting point,
where it will open the grabber and drop the ball.

dseg segment
 Switch sword 0
 Level sword 0
 Volume sword 0
 Distance sword 0
dseg ends

thread main
 SetSensorTouch(IN_1)
 SetSensorSound(IN_2)
 SetSensorLight(IN_3)
 SetSensorUltrasonic(IN_4)

CheckObject:
 ReadSensorUS(IN_4, Distance)
 brcmp GT, CheckObject, Distance, 20

 OnFwdReg(OUT_BC,75,OUT_REGMODE_SYNC)

CheckTouch:
 ReadSensor(IN_1, Switch)
 brtst EQ, CheckTouch, Switch

 Off(OUT_BC)

CheckSound:
 ReadSensor(IN_2, Volume)
 brcmp LT, CheckSound, Volume, 50

 RotateMotor(OUT_A,75,-90)

 OnRevReg(OUT_BC,100,OUT_REGMODE_SYNC)
 wait 200
 Off(OUT_BC)
 RotateMotor(OUT_C,75,-370)
 RotateMotor(OUT_B,75,370)
 OnFwdReg(OUT_BC,100,OUT_REGMODE_SYNC)

CheckLight:
 ReadSensor(IN_3, Level)
 brcmp GT, CheckLight, Level, 35

 Off(OUT_BC)

 RotateMotor(OUT_A,75,90)
endt

Note: This program may not work correctly – it causes my NXT to behave inconsistently.

Summary
In this chapter we have seen a number of additional issues about sensors. We saw how to separately set the type
and mode of a sensor and how this could be used to get additional information. We learned how to use the sound
and the ultrasonic sensors, and how to use a motor as a rotation sensor. Finally, we wrote a program to do a
fairly complex task using all the motors and sensors included with your NXT.

- 37 -

IX. Parallel threads

As has been indicated before, threads in NBC are executed simultaneously, or in parallel as people usually say.
This is extremely useful. In enables you to watch sensors in one task while another task moves the robot around,
and yet another task plays some music. But parallel tasks can also cause problems. One task can interfere with
another.

A wrong program
Consider the following program. Here one thread drives the robot around in squares (like we did so often before)
and the second thread checks for the touch sensor. When the sensor is touched, it moves a bit backwards, and
makes a 90-degree turn.

#define MOVE_TIME 800
#define TURN_TIME 200

dseg segment
 Switch sword 0
 buf byte[]
dseg ends

thread main
 precedes move_square, check_sensors
 SetSensorTouch(IN_1)
 exit
endt

thread move_square
SquareLoop:
 OnFwd(OUT_BC,100)
 wait MOVE_TIME
 OnRev(OUT_C,100)
 wait TURN_TIME
 jmp SquareLoop
endt

thread check_sensors
SensorLoop:
 ReadSensor(IN_1,Switch)
 brtst EQ, SensorLoop, Switch
 OnRev(OUT_BC,100)
 wait 50
 Off(OUT_C)
 wait 85
 jmp SensorLoop
endt

This probably looks like a perfectly valid program. But if you execute it you will most likely find some
unexpected behavior. Try the following: Make the robot touch something while it is turning. It will start going
back, but immediately moves forwards again, hitting the obstacle. The reason for this is that the threads may
interfere. The following is happening. The robot is turning right, that is, the first thread is in its second sleep
statement. Now the robot hits the sensor. It start going backwards, but at that very moment, the main thread is
ready with sleeping and moves the robot forwards again; into the obstacle. The second thread is sleeping at this
moment so it won’t notice the collision. This is clearly not the behavior we would like to see. The problem is
that, while the second thread is sleeping we did not realize that the first thread was still running, and that its
actions interfere with the actions of the second thread.

Using mutexes
A standard technique to solve this problem is to use a variable to indicate which thread is in control of the
motors. The other threads are not allowed to drive the motors until the first thread indicates, using the variable,
that it is ready. Such a variable is often called a mutex (for “mutually exclusive”). NBC provides a special
variable type and functions for implementing mutexes. They are essentially Boolean (TRUE/FALSE) variables,

- 38 -

but can be easily manipulated using the acquire the release commands. Whenever a task wants to do
something with the motors it first acquires the mutex, does what it needs, then releases the mutex. Because
no thread can acquire the mutex if any other thread has it already (the acquire will sleep until the other thread
releases the mutex), this ensures only one thread operates the motor at any time.

Here you find the program above, implemented using a mutex. When the touch sensor touches something, the
mutex is acquired and the backup procedure is performed. During this procedure the task move_square must
wait. At the moment the back-up is ready, the mutex is released and move_square can continue.

#define MOVE_TIME 800
#define TURN_TIME 200

dseg segment
 motor_control mutex
 Switch sword 0
 buf byte[]
dseg ends

thread main
 precedes move_square, check_sensors
 SetSensorTouch(IN_1)
 exit
endt

thread move_square
SquareLoop:
 acquire motor_control
 OnFwd(OUT_BC,100)
 release motor_control
 wait MOVE_TIME
 acquire motor_control
 OnRev(OUT_C,100)
 release motor_control
 wait TURN_TIME
 jmp SquareLoop
endt

thread check_sensors
SensorLoop:
 ReadSensor(IN_1,Switch)
 brtst EQ, SensorLoop, Switch
 acquire motor_control
 OnRev(OUT_BC,100)
 wait 50
 Off(OUT_C)
 wait 85
 release motor_control
 jmp SensorLoop
endt

Mutexes are very useful and, when you are writing complicated programs with parallel tasks, they are almost
always required. (There is still a slight chance they might fail. Try to figure out why.)

Summary
In this chapter we studied some of the problems that can occur when you use different tasks. Always be very
careful for side effects. Much unexpected behavior is due to this. We learned how to use mutex variables to
control the execution of tasks. This guarantees that at every moment only the critical part of one task is executed.

- 39 -

X. Communication between robots

To be completed.

Communication with other NXT bricks

Communication with a PC

Communication with other Bluetooth devices

Summary

- 40 -

XI. More commands

NBC has a number of additional commands. In this chapter we will discuss three types: the use of system calls,
the system clock, arrays and type declarations.

System calls
The NXT firmware provides access to many low level functions via a syscall command. This command
provides access to functions such as:

 NXT files (open, close, read, write, etc)
 Sounds (play tones, files, etc)
 Screen (text, polygons, bitmap graphics, etc)
 NXT buttons
 NXT system clock
 Random number generator
 Bluetooth communications
 Etc

In fact many of the macros you’ve already been using call this function to do their work. I won’t go into any
more detail in this tutorial, but I encourage you to read the NBC manual to find out what functions are available.

System clock
The NXT has a built in clock that allows you to time events down to millisecond accuracy. There are 2 ways to
access this clock – syscall GetStartTick and gettick. While gettick returns the number of milliseconds since the
NXT started, syscall GetStartTick returns the number of milliseconds since the current program started
execution. In both cases you must pass an integer variable, which gets populated with the desired tick count.

The system clock is used in the wait command, but you can use it for anything you like. You can sleep for a
particular amount of time by reading the clock timer and then waiting till it reaches a particular value. But you
can also react on other events (e.g. from sensors) while waiting. The following simple program is an example of
this. It lets the robot drive until either 10 seconds are past, or the touch sensor touches something.

#include "NXTDefs.h"

dseg segment
 cur_tick word
 end_tick word
 Switch sword
dseg ends

thread main
 SetSensorTouch(IN_1)
 gettick cur_tick
 add end_tick, cur_tick, 10000
 OnFwd(OUT_BC,100)

CheckSensor:
 ReadSensor(IN_1,Switch)
 brtst NEQ, StopIt, Switch
 gettick cur_tick
 brcmp LT, CheckSensor, cur_tick, end_tick

StopIt:
 Off(OUT_BC)
endt

- 41 -

Arrays
NBC allows you to declare and use arrays of any dimension, limited only by available memory. The following
functions are provided for manipulating arrays:

 arrinit arraydest, value, size
The arrinit opcode initializes the output array to the value (array, scalar, or user defined type) and size
provided.

 arrbuild arraydest, src1, src2, …, srcN
The arrbuild opcode constructs an output array from a variable number of input arrays, scalars, or
aggregates.

 index dest, arraysrc, index
The index opcode returns the arraysrc[index] value in the dest output argument.

 replace arraydest, arraysrc, index, newval
The replace opcode replaces the arraysrc[index] item in arraydest with the newval input argument
(arraysrc can be the same variable as arraydest to replace without copying the array; newval can be an
array, in which case multiple items are replaced).

 arrsize dest, arraysrc
The arrsize opcode returns the size of the input array in the scalar dest output argument.

 arrsubset arraydest, arraysrc, index, length
The arrsubset opcode copies a subset of the input array to the output array.

Remember that arrays in NBC are always zero-based – the first element is element xero. Here is an example of
how to manipulate arrays:

- 42 -

#include "NXTDefs.h"

dseg segment
 a byte[]
 b byte[]
 c byte[]
 aa byte[][]
 idx byte
 value byte
 tmp byte[]
dseg ends

thread main
 arrinit a, 0, 10 // a initialised to a[0..9]
 arrinit b, 1, 5 // b initialised to b[0..4]
 replace c, a, 0, b // c[0..4]=1, c[5-9]=0
 arrbuild aa, a, b, c // aa[0]=a, aa[1]=b, aa[2]=c
 arrsubset a, c, 3, 5 // a is now [1,1,0,0,0]

 arrsize idx, a // idx=5
 NumOut(0,0,1,idx)
 wait 1000

 arrsize idx, aa // idx=3
 NumOut(0,0,1,idx)
 wait 1000

 index value, a, 1 // value=1
 NumOut(0,0,1,value)
 wait 1000

 index value, a, 2 // value=0
 NumOut(0,0,1,value)
 wait 1000

 index tmp, aa, 2 // temp=[1,1,1,1,1,0,0,0,0,0]
 index value, tmp, 2 // value=1
 NumOut(0,0,1,value)
 wait 1000
endt

Type declarations
You can declare your own data structures in NBC, and use them to store related information. They are declared
using the struct opcode, and like variables, must be contained in a data segment. Once a variable of user-defined
type is defined, it’s elements can be accessed using the familiar dot notation:

- 43 -

#include "NXTDefs.h"

dseg segment

TDate struct
 Day byte
 Month byte
 Year word
TDate ends

TEvent struct
 Date TDate
 Name byte[]
TEvent ends

 MyDate TDate
 MyEvent TEvent
 MyCalendar TEvent[]

dseg ends

thread main
 //Set date to 1st May 2006
 set MyDate.Day, 1
 set MyDate.Month, 5
 set MyDate.Year, 2006

 // Create an event
 mov MyEvent.Date, MyDate
 mov MyEvent.Name, 'May Day!'

 // Put the event in the calendar
 arrbuild MyCalendar, MyEvent
endt

Note that you can declare an array of user defined type, and your data structure can contain array elements.

Type aliases
You can define aliases for any built-in or user-defined type, using typedef. This can be useful if you have
entities that can be described using a built-in type, but you want to give the entity its own data type. This may
not seem all that useful, but it can make maintenance easier – if you need to change the data type for that entity,
you only have to change it in 1 place, and all variables of that type will automatically change.

Here is a simple example:

- 44 -

#include "NXTDefs.h"

dseg segment
 small typedef byte // 8 bits
 medium typedef word // 16 bits
 big typedef dword // 32 bits

 MySmall small
 MyMedium medium
 MyBig big
dseg ends

thread main
 set MySmall, 65535
 add MySmall, MySmall, 65535
 set MyMedium, 65535
 add MyMedium, MyMedium, 65535
 set MyBig, 65535
 add MyBig, MyBig, 65535

 NumOut(0,20,0,MySmall) // displays 254
 NumOut(0,10,0,MyMedium) // displays 65534
 NumOut(0,0,0,MyBig) // displays 131070

 wait 1000
endt

Summary
In this chapter we found out about some more features of the NBC language. We looked at system calls, and the
various things they can do, learned how to access the system clock, and finally, learned about how to declare
arrays and user-defined types.

- 45 -

Final remarks

If you have worked your way through this tutorial you can now consider yourself an expert in NBC. If you have
not done this up to now, it is time to start experimenting yourself. With creativity in design and programming
you can make Lego robots do the most wonderful things.

This tutorial did not cover all aspects of the Bricx Command Center. You are recommended to read the
documentation at some stage. Also NBC is still in development. Future version might incorporate additional
functionality. Many programming concepts were not treated in this tutorial. In particular, we did not consider
learning behavior of robots or other aspects of artificial intelligence.

It is also possible to steer a Lego robot directly from a PC. This requires you to write a program in a language
like Visual Basic, Java or Delphi. It is also possible to let such a program work together with an NBC program
running in the NXT itself, using Bluetooth communication. Such a combination is very powerful.

You can find more information about the NXT from the Lego MindStorms web site.

http://mindstorms.lego.com/

The web is a perfect source for additional information. Some other important starting points are on LUGNET,
the LEGO Users Group Network (unofficial):

http://www.lugnet.com/
http://forums.nxtasy.org/

A lot of information can also be found in the newsgroup lugnet.robotics and lugnet.robotics.nxt at
news.lugnet.com.

