

NQC Programmer's Guide

Version 3.1 r5

by Dave Baum & John Hansen

Page i

Contents

1 Introduction ...1

2 The NQC Language...2

2.1 Lexical Rules ...2

2.1.1 Comments ..2

2.1.2 Whitespace...3

2.1.3 Numerical Constants ..3

2.1.4 Identifiers and Keywords..3

2.2 Program Structure..4

2.2.1 Tasks..4

2.2.2 Functions ...5

2.2.3 Subroutines ..8

2.2.4 Variables..9

2.2.5 Arrays ..11

2.3 Statements ...11

2.3.1 Variable Declaration ..11

2.3.2 Assignment ..12

2.3.3 Control Structures ..13

2.3.4 Access Control and Events ...16

2.3.5 Other Statements ..18

2.4 Expressions..18

2.4.1 Conditions..20

2.5 The Preprocessor..21

2.5.1 #include ...21

Page ii

2.5.2 #define ...21

2.5.3 Conditional Compilation ..22

2.5.4 Program Initialization...22

2.5.5 Reserving Storage ..22

3 NQC API...24

3.1 Sensors ..24

3.1.1 Types and Modes RCX, CM, Spy...25

3.1.2 Sensor Information...27

3.1.3 Scout Light Sensor Scout ...28

3.1.4 Spybotics Sensors Spy..29

3.2 Outputs ..30

3.2.1 Primitive Calls ...30

3.2.2 Convenience Calls..31

3.2.3 Global Control RCX2, Scout, Spy ..33

3.2.4 Spybotics Outputs ..35

3.3 Sound ..35

3.4 LCD Display RCX...37

3.5 Communication..38

3.5.1 Messages RCX, Scout ..38

3.5.2 Serial RCX2, Spy...40

3.5.3 VLL Scout, Spy..49

3.6 Timers ...49

3.7 Counters RCX2, Scout, Spy ...50

3.8 Access Control RCX2, Scout, Spy ...51

Page iii

3.9 Events RCX2, Scout ..51

3.9.1 Configurable Events RCX2, Spy ..52

3.9.2 Scout Events Scout...57

3.10 Data Logging RCX ..59

3.11 General Features ..61

3.12 RCX Specific Features...63

3.13 Scout Specific Features ..63

3.14 CyberMaster Specific Features...64

3.15 Spybotics Specific Features..66

3.16 Swan Specific Features ..82

4 Technical Details ...97

4.1 The asm statement ...97

4.2 Data Sources..98

NQC Programmer's Guide

Page 1

1 Introduction

NQC stands for Not Quite C, and is a simple language for programming several LEGO

MINDSTORMS products. Some of the NQC features depend on which MINDSTORMS

product you are using. This product is referred to as the target for NQC. Presently, NQC

supports six different targets: RCX, RCX2 (an RCX running 2.0 firmware), CyberMaster,

Scout, Spybotics, and Swan (an RCX running Dick Swan�s enhanced firmware).

All of the targets have a bytecode interpreter (provided by LEGO) which can be used to

execute programs. The NQC compiler translates a source program into LEGO bytecodes,

which can then be executed on the target itself. Although the preprocessor and control

structures of NQC are very similar to C, NQC is not a general purpose language - there

are many restrictions that stem from limitations of the LEGO bytecode interpreter.

Logically, NQC is defined as two separate pieces. The NQC language describes the

syntax to be used in writing programs. The NQC API describes the system functions,

constants, and macros that can be used by programs. This API is defined in a special file

built in to the compiler. By default, this file is always processed before compiling a

program.

This document describes both the NQC language and the NQC API. In short, it provides

the information needed to write NQC programs. Since there are several different

interfaces for NQC, this document does not describe how to use any specific NQC

implementation. Refer to the documentation provided with the NQC tool, such as the

NQC User Manual for information specific to that implementation.

For up-to-date information and documentation for NQC, visit the NQC Web Site at

http://bricxcc.sourceforge.net/nqc

NQC Programmer's Guide

Page 2

2 The NQC Language

This section describes the NQC language itself. This includes the lexical rules used by

the compiler, the structure programs, statements, and expressions, and the operation of

the preprocessor.

2.1 Lexical Rules

The lexical rules describe how NQC breaks a source file into individual tokens. This

includes the way comments are written, then handling of whitespace, and valid characters

for identifiers.

2.1.1 Comments

Two forms of comments are supported in NQC. The first form (traditional C comments)

begin with /* and end with */. They may span multiple lines, but do not nest:

/* this is a comment */

/* this is a two
 line comment */

/* another comment...
 /* trying to nest...
 ending the inner comment...*/
 this text is no longer a comment! */

The second form of comments begins with // and ends with a newline (sometimes

known as C++ style comments).

// a single line comment

Comments are ignored by the compiler. Their only purpose is to allow the programmer

to document the source code.

NQC Programmer's Guide

Page 3

2.1.2 Whitespace

Whitespace (spaces, tabs, and newlines) is used to separate tokens and to make programs

more readable. As long as the tokens are distinguishable, adding or subtracting

whitespace has no effect on the meaning of a program. For example, the following lines

of code both have the same meaning:

x=2;
x = 2 ;

Some of the C++ operators consist of multiple characters. In order to preserve these

tokens whitespace must not be inserted within them. In the example below, the first line

uses a right shift operator ('>>'), but in the second line the added space causes the '>'

symbols to be interpreted as two separate tokens and thus generate an error.

x = 1 >> 4; // set x to 1 right shifted by 4 bits

x = 1 > > 4; // error

2.1.3 Numerical Constants

Numerical constants may be written in either decimal or hexadecimal form. Decimal

constants consist of one or more decimal digits. Hexadecimal constants start with 0x or

0X followed by one or more hexadecimal digits.

x = 10; // set x to 10
x = 0x10; // set x to 16 (10 hex)

2.1.4 Identifiers and Keywords

Identifiers are used for variable, task, function, and subroutine names. The first character

of an identifier must be an upper or lower case letter or the underscore ('_'). Remaining

characters may be letters, numbers, and an underscore.

A number of potential identifiers are reserved for use in the NQC language itself. These

reserved words are call keywords and may not be used as identifiers. A complete list of

keywords appears below:

__event_src

__nolist

__res

__sensor

__taskid

__type

abs

acquire

NQC Programmer's Guide

Page 4

asm

break

case

catch

const

continue

default

do

else

false

for

goto

if

inline

int

monitor

repeat

return

sign

start

stop

sub

switch

task

true

void

while

2.2 Program Structure

An NQC program is composed of code blocks and global variables. There are three

distinct types of code blocks: tasks, inline functions, and subroutines. Each type of code

block has its own unique features and restrictions, but they all share a common structure.

2.2.1 Tasks

The RCX implicitly supports multi-tasking, thus an NQC task directly corresponds to an

RCX task. Tasks are defined using the task keyword using the following syntax:

task name()
{
 // the task's code is placed here
}

The name of the task may be any legal identifier. A program must always have at least

one task - named "main" - which is started whenever the program is run. The maximum

number of tasks depends on the target - the RCX supports 10 tasks, CyberMaster

supports 4, Scout supports 6, and Spybotics supports 8.

The body of a task consists of a list of statements. Tasks may be started and stopped

using the start and stop statements (described in the section titled Statements). There

is also a NQC API command, StopAllTasks, which stops all currently running tasks.

NQC Programmer's Guide

Page 5

2.2.2 Functions

It is often helpful to group a set of statements together into a single function, which can

then be called as needed. NQC supports functions with arguments, but not return values.

Functions are defined using the following syntax:

void name(argument_list)
{
 // body of the function
}

The keyword void is an artifact of NQC's heritage - in C functions are specified with the

type of data they return. Functions that do not return data are specified to return void.

Returning data is not supported in NQC, thus all functions are declared using the void

keyword.

The argument list may be empty, or may contain one or more argument definitions. An

argument is defined by its type followed by its name. Multiple arguments are separated

by commas. All values are represented as 16 bit signed integers. However NQC

supports six different argument types which correspond to different argument passing

semantics and restrictions:

Type Meaning Restriction

int pass by value none

const int pass by value only constants may be used

int & pass by reference only variables may be used

const int & pass by reference function cannot modify argument

int* pass pointer only pointers may be used

const int * pass pointer function cannot modify pointer argument

Arguments of type int are passed by value from the calling function to the callee. This

usually means that the compiler must allocate a temporary variable to hold the argument.

There are no restrictions on the type of value that may be used. However, since the

function is working with a copy of the actual argument, any changes it makes to the value

will not be seen by the caller. In the example below, the function foo attempts to set the

value of its argument to 2. This is perfectly legal, but since foo is working on a copy of

the original argument, the variable y from main task remains unchanged.

NQC Programmer's Guide

Page 6

void foo(int x)
{
 x = 2;
}

task main()
{
 int y = 1; // y is now equal to 1
 foo(y); // y is still equal to 1!
}

The second type of argument, const int, is also passed by value, but with the

restriction that only constant values (e.g. numbers) may be used. This is rather important

since there are a number of RCX functions that only work with constant arguments.

void foo(const int x)
{
 PlaySound(x); // ok
 x = 1; // error - cannot modify argument
}

task main()
{
 foo(2); // ok
 foo(4*5); // ok - expression is still constant
 foo(x); // error - x is not a constant
}

The third type, int &, passes arguments by reference rather than by value. This allows

the callee to modify the value and have those changes visible in the caller. However,

only variables may be used when calling a function using int & arguments:

void foo(int &x)
{
 x = 2;
}

task main()
{
 int y = 1; // y is equal to 1

 foo(y); // y is now equal to 2
 foo(2); // error - only variables allowed
}

The fourth type, const int &, is rather unusual. It is also passed by reference, but with

the restriction that the callee is not allowed to modify the value. Because of this

restriction, the compiler is able to pass anything (not just variables) to functions using

NQC Programmer's Guide

Page 7

this type of argument. In general this is the most efficient way to pass arguments in

NQC.

There is one important difference between int arguments and const int & arguments.

An int argument is passed by value, so in the case of a dynamic expression (such as a

sensor reading), the value is read once then saved. With const int & arguments, the

expression will be re-read each time it is used in the function:

void foo(int x)
{
 if (x==x) // this will always be true
 PlaySound(SOUND_CLICK);
}

void bar(const int &x)
{
 if (x==x) // may not be true..value could change
 PlaySound(SOUND_CLICK);
}

task main()
{
 foo(SENSOR_1); // will play sound
 bar(2); // will play sound
 bar(SENSOR_1); // may not play sound
}

The last two types, int * and const int *, pass pointer arguments. Proper usage of

pointer arguments requires that they be de-referenced.

void foo(int * p)
{

 *p = 4;
}

 task main()
{
 int x = 2;
 int* y = &x; // y contains the address of x
 foo(y); // x = 4
}

Functions must be invoked with the correct number (and type) of arguments. The

example below shows several different legal and illegal calls to function foo:

void foo(int bar, const int baz)
{

NQC Programmer's Guide

Page 8

 // do something here...
}

task main()
{
 int x; // declare variable x

 foo(1, 2); // ok
 foo(x, 2); // ok
 foo(2, x); // error - 2nd argument not constant!
 foo(2); // error - wrong number of arguments!
}

NQC functions are always expanded as inline functions. This means that each call to a

function results in another copy of the function's code being included in the program.

Unless used judiciously, inline functions can lead to excessive code size.

2.2.3 Subroutines

Unlike inline functions, subroutines allow a single copy of some code to be shared

between several different callers. This makes subroutines much more space efficient than

inline functions, but due to some limitations in the LEGO bytecode interpreter,

subroutines have some significant restrictions. First of all, subroutines cannot use any

arguments. Second, a subroutine cannot call another subroutine. Last, the maximum

number of subroutines is limited to 8 for the RCX, 4 for CyberMaster, 3 for Scout, and 32

for Spybotics. In addition, when using RCX 1.0 or CyberMaster, if the subroutine is

called from multiple tasks then it cannot have any local variables or perform calculations

that require temporary variables. These significant restrictions make subroutines less

desirable than functions; therefore their use should be minimized to those situations

where the resultant savings in code size is absolutely necessary. The syntax for a

subroutine appears below:

sub name()
{
 // body of subroutine
}

NQC Programmer's Guide

Page 9

2.2.4 Variables

All variables in NQC are of one of two types - specifically 16 bit signed integers or

pointers to 16 bit signed integers. Variables are declared using the int keyword followed

by a comma separated list of variable names (each with an optional '*' pointer indicator in

front of the name) and terminated by a semicolon (';'). Optionally, an initial value for

each variable may be specified using an equals sign ('=') after the variable name. Several

examples appear below:

int x; // declare x
int y,z; // declare y and z
int *q, *p = &x; // declare ptrs q and p, p = address of x
int a=1,b; // declare a and b, initialize a to 1

Global variables are declared at the program scope (outside any code block). Once

declared, they may be used within all tasks, functions, and subroutines. Their scope

begins at declaration and ends at the end of the program.

Local variables may be declared within tasks, functions, and sometimes within

subroutines. Such variables are only accessible within the code block in which they are

defined. Specifically, their scope begins with their declaration and ends at the end of

their code block. In the case of local variables, a compound statement (a group of

statements bracketed by { and }) is considered a block:

int x; // x is global

task main()
{
 int y; // y is local to task main
 x = y; // ok
 { // begin compound statement
 int z; // local z declared
 y = z; // ok
 }
 y = z; // error - z no longer in scope
}

task foo()
{
 x = 1; // ok
 y = 2; // error - y is not global
}

NQC Programmer's Guide

Page 10

In many cases NQC must allocate one or more temporary variables for its own use. In

some cases a temporary variable is used to hold an intermediate value during a

calculation. In other cases it is used to hold a value as it is passed to a function. These

temporary variables deplete the pool of variables available to the rest of the program.

NQC attempts to be as efficient as possible with temporary variables (including reusing

them when possible).

The RCX (and other targets) provide a number of storage locations which can be used to

hold variables in an NQC program. There are two kinds of storage locations - global and

local. When compiling a program, NQC assigns each variable to a specific storage

location. Programmers for the most part can ignore the details of this assignment by

following two basic rules:

� If a variable needs to be in a global location, declare it as a global variable.

� If a variable does not need to be a global variable, make it as local as possible.

This gives the compiler the most flexibility in assigning an actual storage

location.

The number of global and local locations varies by target

Target Global Local

RCX (1.0) 32 0

CyberMaster 32 0

Scout 10 8

RCX2 32 16

Swan 32 16

Spybotics 32 4

NQC Programmer's Guide

Page 11

2.2.5 Arrays

The RCX2, Swan, and Spybotics targets support arrays (the other targets do not have

suitable support in firmware for arrays). Arrays are declared the same way as ordinary

variables, but with the size of the array enclosed in brackets. The size must be a constant.

int my_array[3]; // declare an array with three elements

The elements of an array are identified by their position within the array (called an

index). The first element has an index of 0, the second has index 1, etc. For example:

my_array[0] = 123; // set first element to 123

my_array[1] = my_array[2]; // copy third into second

Currently there are a number of limitations on how arrays can be used. These limitations

will likely be removed in future versions of NQC:

� An array cannot be an argument to a function. An individual array element,

however, can be passed to a function.

� Neither arrays nor their elements can be used with the increment (++) or

decrement (--) operators.

� The initial values for an array's elements cannot be specified - an explicit

assignment is required within the program itself to set the value of an element.

2.3 Statements

The body of a code block (task, function, or subroutine) is composed of statements.

Statements are terminated with a semi-colon (';').

2.3.1 Variable Declaration

Variable declaration, as described in the previous section, is one type of statement. It

declares a local variable (with optional initialization) for use within the code block. The

syntax for a variable declaration is:

int variables;

NQC Programmer's Guide

Page 12

where variables is a comma separated list of names with optional initial values and an

optional pointer indicator:

[*]name[=expression]

Arrays of variables may also be declared (for the RCX2, Swan, and Spybotics only):

int array[size];

2.3.2 Assignment

Once declared, variables may be assigned the value of an expression:

variable assign_operator expression;

There are nine different assignment operators. The most basic operator, '=', simply

assigns the value of the expression to the variable. The other operators modify the

variable's value in some other way as shown in the table below

Operator Action

= Set variable to expression

+= Add expression to variable

-= Subtract expression from variable

*= Multiple variable by expression

/= Divide variable by expression

%= Set variable to remainder after dividing by expression

&= Bitwise AND expression into variable

|= Bitwise OR expression into variable

^= Bitwise exclusive OR into variable

||= Set variable to absolute value of expression

+-= Set variable to sign (-1,+1,0) of expression

>>= Right shift variable by a constant amount

<<= Left shift variable by a constant amount

Some examples:

x = 2; // set x to 2
y = 7; // set y to 7
x += y; // x is 9, y is still 7

NQC Programmer's Guide

Page 13

2.3.3 Control Structures

The simplest control structure is a compound statement. This is a list of statements

enclosed within curly braces ('{' and '}'):

{
 x = 1;
 y = 2;
}

Although this may not seem very significant, it plays a crucial role in building more

complicated control structures. Many control structures expect a single statement as their

body. By using a compound statement, the same control structure can be used to control

multiple statements.

The if statement evaluates a condition. If the condition is true it executes one statement

(the consequence). An optional second statement (the alternative) is executed if the

condition is false. The two syntaxes for an if statement is shown below.

if (condition) consequence
if (condition) consequence else alternative

Note that the condition is enclosed in parentheses. Examples are shown below. Note

how a compound statement is used in the last example to allow two statements to be

executed as the consequence of the condition.

if (x==1) y = 2;
if (x==1) y = 3; else y = 4;
if (x==1) { y = 1; z = 2; }

The while statement is used to construct a conditional loop. The condition is evaluated,

and if true the body of the loop is executed, then the condition is tested again. This

process continues until the condition becomes false (or a break statement is executed).

The syntax for a while loop appears below:

while (condition) body

It is very common to use a compound statement as the body of a loop:

while(x < 10)
{
 x = x+1;
 y = y*2;
}

NQC Programmer's Guide

Page 14

A variant of the while loop is the do-while loop. Its syntax is:

do body while (condition)

The difference between a while loop and a do-while loop is that the do-while loop

always executes the body at least once, whereas the while loop may not execute it at all.

Another kind of loop is the for loop:

for(stmt1 ; condition ; stmt2) body

A for loop always executes stmt1, then it repeatedly checks the condition and while it

remains true executes the body followed by stmt2. The for loop is equivalent to:

stmt1;
while(condition)
{
 body
 stmt2;
}

The repeat statement executes a loop a specified number of times:

repeat (expression) body

The expression determines how many times the body will be executed. Note that it is

only evaluated a single time, then the body is repeated that number of times. This is

different from both the while and do-while loops which evaluate their condition each

time through the loop.

A switch statement can be used to execute one of several different blocks of code

depending on the value of an expression. Each block of code is preceded by one or more

case labels. Each case must be a constant and unique within the switch statement. The

switch statement evaluates the expression then looks for a matching case label. It will

then execute any statements following the matching case until either a break statement or

the end of the switch is reaches. A single default label may also be used - it will match

any value not already appearing in a case label. Technically, a switch statement has the

following syntax:

switch (expression) body

The case and default labels are not statements in themselves - they are labels that precede

statements. Multiple labels can precede the same statement. These labels have the

following syntax

NQC Programmer's Guide

Page 15

case constant_expression :
default :

A typical switch statement might look like this:

switch(x)
{
 case 1:
 // do something when X is 1
 break;
 case 2:
 case 3:
 // do something else when x is 2 or 3
 break;
 default:
 // do this when x is not 1, 2, or 3
 break;
}

The goto statement forces a program to jump to the specified location. Statements in a

program can be labeled by preceding them with an identifier and a colon. A goto

statement then specifies the label which the program should jump to. For example, this is

how an infinite loop that increments a variable could be implemented using goto:

my_loop:
 x++;
 goto my_loop;

The goto statement should be used sparingly and cautiously. In almost every case,

control structures such as if, while, and switch make a program much more readable

and maintainable than using goto. Care should be taken to never use a goto to jump

into or out of a monitor or acquire statement. This is because monitor and

acquire have special code that normally gets executed upon entry and exit, and a goto

will bypass that code � probably resulting in undesirable behavior.

NQC also defines the until macro which provides a convenient alternative to the

while loop. The actual definition of until is:

#define until(c) while(!(c))

In other words, until will continue looping until the condition becomes true. It is most

often used in conjunction with an empty body statement:

until(SENSOR_1 == 1); // wait for sensor to be pressed

NQC Programmer's Guide

Page 16

2.3.4 Access Control and Events

The Scout, RCX2, Swan, and Spybotics support access control and event monitoring.

Access control allows a task to request ownership of one or more resources. In NQC,

access control is provided by the acquire statement, which has two forms:

acquire (resources) body

acquire (resources) body catch handler

where resources is a constant that specifies the resources to be acquired and body and

handler are statements. The NQC API defines constants for individual resources which

may be added together to request multiple resources at the same time. The behavior of

the acquire statement is as follows: Ownership of the specified resources will be

requested. If another task of higher priority already owns the resources, then the request

will fail and execution will jump to the handler (if present). Otherwise, the request will

succeed, and the body will begin to be executed. While executing the body, if another

task of equal or higher priority requests any of the owned resources, then the original task

will lose ownership. When ownership is lost, execution will jump to the handler (if

present). Once the body has completed, the resources will be returned back to the system

(so that lower priority tasks may acquire them), and execution will continue with the

statement following the acquire statement. If a handler is not specified, then in both the

case of a failed request, or a subsequent loss of ownership, control will pass to the

statement following the acquire statement. For example, the following code acquires a

resource for 10 seconds, playing a sound if it cannot complete successfully:

acquire(ACQUIRE_OUT_A)
{
 Wait(1000);
}
catch
{
 PlaySound(SOUND_UP);
}

Event monitoring is implemented with the monitor statement, which has a syntax very

similar to acquire:

monitor (events) body

monitor (events) body handler_list

NQC Programmer's Guide

Page 17

Where handler_list is one or more handlers of the form

catch (catch_events) handler

The last handler in a handler list can omit the event specification:

catch handler

Events is a constant that determines which events should be monitored. For the Scout,

events are predefined, so there are constants such as EVENT_1_PRESSED which can be

used to specify events. With RCX2, Swan, and Spybotics, the meaning of each event is

configured by the programmer. There are 16 events (numbers 0 to 15). In order to

specify an event in a monitor statement, the event number must be converted to an event

mask using the EVENT_MASK() macro. The Scout event constants or event masks may

be added together to specify multiple events. Multiple masks can be combined using

bitwise OR.

The monitor statement will execute the body while monitoring the specified events. If

any of the events occur, execution will jump to the first handler for that event (a handler

without an event specification handles any event). If no event handler exists for the

event, then control will continue at the statement following the monitor statement. The

following example waits for 10 seconds while monitoring events 2, 3, and 4 for RCX2:

monitor(EVENT_MASK(2) | EVENT_MASK(3) | EVENT_MASK(4))
{
 Wait(1000);
}
catch (EVENT_MASK(4))
{
 PlaySound(SOUND_DOWN); // event 4 happened
}
catch
{
 PlaySound(SOUND_UP); // event 2 or 3 happened
}

Note that the acquire and monitor statements are only supported for targets that

implement access control and event monitoring - specifically the Scout, RCX2, Swan,

and Spybotics.

NQC Programmer's Guide

Page 18

2.3.5 Other Statements

A function (or subroutine) call is a statement of the form:

name(arguments);

The arguments list is a comma separated list of expressions. The number and type of

arguments supplied must match the definition of the function itself.

Tasks may be started or stopped with the following statements:

start task_name;

stop task_name;

Within loops (such as a while loop) the break statement can be used to exit the loop

and the continue statement can be used to skip to the top of the next iteration of the

loop. The break statement can also be used to exit a switch statement.

break;

continue;

It is possible to cause a function to return before it reaches the end of its code using the

return statement.

return;

Any expression is also a legal statement when terminated by a semicolon. It is rare to use

such a statement since the value of the expression would then be discarded. The one

notable exception is expressions involving the increment (++) or decrement (--)

operators.

x++;

The empty statement (just a bare semicolon) is also a legal statement.

2.4 Expressions

Earlier versions of NQC made a distinction between expressions and conditions. As of

version 2.3, this distinction was eliminated: everything is an expression, and there are

now conditional operators for expressions. This is similar to how C/C++ treats

conditional operations.

NQC Programmer's Guide

Page 19

Values are the most primitive type of expressions. More complicated expressions are

formed from values using various operators. The NQC language only has two built in

kinds of values: numerical constants and variables. The RCX API defines other values

corresponding to various RCX features such as sensors and timers.

Numerical constants in the RCX are represented as 16 bit signed integers. NQC

internally uses 32 bit signed math for constant expression evaluation, then reduces to 16

bits when generating RCX code. Numeric constants can be written as either decimal (e.g.

123) or hexadecimal (e.g. 0xABC). Presently, there is very little range checking on

constants, so using a value larger than expected may have unusual effects.

Two special values are predefined: true and false. The value of false is zero, while

the value of true is only guaranteed to be non-zero. The same values hold for relational

operators (e.g. <): when the relation is false, the value is 0, otherwise the value is non-

zero.

Values may be combined using operators. Several of the operators may only be used in

evaluating constant expressions, which means that their operands must either be

constants, or expressions involving nothing but constants. The operators are listed here

in order of precedence (highest to lowest).

Operator Description Associativity Restriction Example

abs()

sign()

Absolute value

Sign of operand

n/a

n/a

 abs(x)

sign(x)

++, -- Increment, decrement left variables only x++ or ++x

-

~

!

Unary minus

Bitwise negation (unary)

Logical negation

right

right

right

constant only

-x

~123

!x

*, /, % Multiplication, division,

modulo

left x * y

+, - Addition, subtraction left x + y

<<, >> Left and right shift left shift amount

must constant

x << 4

NQC Programmer's Guide

Page 20

<, >,

<=, >=

relational operators left x < y

==, != equal to, not equal to left x == 1

& Bitwise AND left x & y

^ Bitwise XOR left x ^ y

| Bitwise OR left x | y

&& Logical AND left x && y

|| Logical OR left x || y

? : conditional value n/a x==1 ? y : z

Where needed, parentheses may be used to change the order of evaluation:

x = 2 + 3 * 4; // set x to 14
y = (2 + 3) * 4; // set y to 20

2.4.1 Conditions

Conditions are generally formed by comparing two expressions. There are also two

constant conditions - true and false - which always evaluate to true or false

respectively. A condition may be negated with the negation operator, or two conditions

combined with the AND and OR operators. The table below summarizes the different

types of conditions.

Condition Meaning

True always true

False always false

Expr true if expr is not equal to 0

expr1 == expr2 true if expr1 equals expr2

expr1 != expr2 true if expr1 is not equal to expr2

expr1 < expr2 true if one expr1 is less than expr2

expr1 <= expr2 true if expr1 is less than or equal to expr2

NQC Programmer's Guide

Page 21

expr1 > expr2 true if expr1 is greater than expr2

expr1 >= expr2 true if expr1 is greater than or equal to expr2

! condition logical negation of a condition - true if condition is false

cond1 && cond2 logical AND of two conditions (true if and only if both conditions are

true)

cond1 || cond2 logical OR of two conditions (true if and only if at least one of the

conditions are true)

2.5 The Preprocessor

The preprocessor implements the following directives: #include, #define, #ifdef,

#ifndef, #if, #elif, #else, #endif, #undef. Its implementation is fairly close to a

standard C preprocessor, so most things that work in a generic C preprocessor should

have the expected effect in NQC. Significant deviations are listed below.

2.5.1 #include

The #include command works as expected, with the caveat that the filename must be

enclosed in double quotes. There is no notion of a system include path, so enclosing a

filename in angle brackets is forbidden.

#include "foo.nqh" // ok

#include <foo.nqh> // error!

2.5.2 #define

The #define command is used for simple macro substitution. Redefinition of a macro

is an error (unlike in C where it is a warning). Macros are normally terminated by the

end of the line, but the newline may be escaped with the backslash ('\') to allow multi-

line macros:

#define foo(x) do { bar(x); \
 baz(x); } while(false)

NQC Programmer's Guide

Page 22

The #undef directive may be used to remove a macro�s definition.

2.5.3 Conditional Compilation

Conditional compilation works similar to the C preprocessor. The following

preprocessor directives may be used:

#if condition
#ifdef symbol
#ifndef symbol
#else
#elif condition
#endif

Conditions in #if directives use the same operators and precedence as in C. The

defined() operator is supported.

2.5.4 Program Initialization

The compiler will insert a call to a special initialization function, _init, at the start of a

program. This default function is part of the RCX API and sets all three outputs to full

power in the forward direction (but still turned off). The initialization function can be

disabled using the #pragma noinit directive:

#pragma noinit // don't do any program initialization

The default initialization function can be replaced with a different function using the

#pragma init directive.

#pragma init function // use custom initialization

2.5.5 Reserving Storage

The NQC compiler automatically assigns variables to storage locations. However,

sometimes it is necessary to prevent the compiler from using certain storage locations.

This can be done with the #pragma reserve directive:

#pragma reserve start
#pragma reserve start end

This directive forces the compiler to ignore one or more storage locations during variable

assignment. Start and end must be numbers that refer to valid storage locations. If only a

NQC Programmer's Guide

Page 23

start is provided, then that single location is reserved. If start and end are both specified,

then the range of locations from start to end (inclusive) are reserved. The most common

use of this directive is to reserve locations 0, 1, and/or 2 when using counters for RCX2,

Swan, and Spybotics. This is because the RCX2, Swan, and Spybotics counters are

overlapped with storage locations 0, 1, and 2. For example, if all three counters were

going to be used:

#pragma reserve 0 2

NQC Programmer's Guide

Page 24

3 NQC API

The NQC API defines a set of constants, functions, values, and macros that provide

access to various capabilities of the target such as sensors, outputs, timers, and

communication. Some features are only available on certain targets. Where appropriate,

a section's title will indicate which targets it applies to. The RCX2 and Swan are a

superset of RCX features, so if RCX is listed, then the feature works with the original

firmware, the 2.0 firmware, and the Swan firmware. If RCX2 is listed, then the feature

only applies to the 2.0 firmware and the Swan firmware. If Swan is listed alone, then the

feature only applies to the Swan firmware. CyberMaster, Scout, and Spybotics are

indicated by CM, Scout, and Spy respectively.

The API consists of functions, values, and constants. A function is something that can be

called as a statement. Typically it takes some action or configures some parameter.

Values represent some parameter or quantity and can be used in expressions. Constants

are symbolic names for values that have special meanings for the target. Often, a set of

constants will be used in conjunction with a function. For example, the PlaySound

function takes a single argument which determines which sound is to be played.

Constants, such as SOUND_UP, are defined for each sound.

3.1 Sensors

There are three sensors, which internally are numbered 0, 1, and 2. This is potentially

confusing since they are externally labeled on the RCX as sensors 1, 2, and 3. To help

mitigate this confusion, the sensor names SENSOR_1, SENSOR_2, and SENSOR_3 have

been defined. These sensor names may be used in any function that requires a sensor as

an argument. Furthermore, the names may also be used whenever a program wishes to

read the current value of the sensor:

x = SENSOR_1; // read sensor and store value in x

NQC Programmer's Guide

Page 25

3.1.1 Types and Modes RCX, CM, Spy

The sensor ports on the RCX are capable of interfacing to a variety of different sensors

(other targets don't support configurable sensor types). It is up to the program to tell the

RCX what kind of sensor is attached to each port. A sensor's type may be configured by

calling SetSensorType. . There are four sensor types, each corresponding to a specific

LEGO sensor. A fifth type (SENSOR_TYPE_NONE) can be used for reading the raw

values of generic passive sensors. In general, a program should configure the type to

match the actual sensor. If a sensor port is configured as the wrong type, the RCX may

not be able to read it accurately.

Sensor Type Meaning

SENSOR_TYPE_NONE generic passive sensor

SENSOR_TYPE_TOUCH a touch sensor

SENSOR_TYPE_TEMPERATURE a temperature sensor

SENSOR_TYPE_LIGHT a light sensor

SENSOR_TYPE_ROTATION a rotation sensor

The RCX, CyberMaster, and Spybotics allow a sensor to be configured in different

modes. The sensor mode determines how a sensor's raw value is processed. Some

modes only make sense for certain types of sensors, for example

SENSOR_MODE_ROTATION is useful only with rotation sensors. The sensor mode can be

set by calling SetSensorMode. The possible modes are shown below. Note that since

CyberMaster does not support temperature or rotation sensors, the last three modes are

restricted to the RCX only. Spybotics is even more restrictive, allowing only raw,

boolean, and percentage modes.

Sensor Mode Meaning

SENSOR_MODE_RAW raw value from 0 to 1023

SENSOR_MODE_BOOL boolean value (0 or 1)

SENSOR_MODE_EDGE counts number of boolean transitions

SENSOR_MODE_PULSE counts number of boolean periods

SENSOR_MODE_PERCENT value from 0 to 100

SENSOR_MODE_FAHRENHEIT degrees F - RCX only

NQC Programmer's Guide

Page 26

SENSOR_MODE_CELSIUS degrees C - RCX only

SENSOR_MODE_ROTATION rotation (16 ticks per revolution) - RCX only

When using the RCX, it is common to set both the type and mode at the same time. The

SetSensor function makes this process a little easier by providing a single function to call

and a set of standard type/mode combinations.

Sensor Configuration Type Mode

SENSOR_TOUCH SENSOR_TYPE_TOUCH SENSOR_MODE_BOOL

SENSOR_LIGHT SENSOR_TYPE_LIGHT SENSOR_MODE_PERCENT

SENSOR_ROTATION SENSOR_TYPE_ROTATION SENSOR_MODE_ROTATION

SENSOR_CELSIUS SENSOR_TYPE_TEMPERATURE SENSOR_MODE_CELSIUS

SENSOR_FAHRENHEIT SENSOR_TYPE_TEMPERATURE SENSOR_MODE_FAHRENHEIT

SENSOR_PULSE SENSOR_TYPE_TOUCH SENSOR_MODE_PULSE

SENSOR_EDGE SENSOR_TYPE_TOUCH SENSOR_MODE_EDGE

The RCX provides a boolean conversion for all sensors - not just touch sensors. This

boolean conversion is normally based on preset thresholds for the raw value. A "low"

value (less than 460) is a boolean value of 1. A high value (greater than 562) is a boolean

value of 0. This conversion can be modified: a slope value between 0 and 31 may be

added to a sensor's mode when calling SetSensorMode. If the sensor's value changes

more than the slope value during a certain time (3ms), then the sensor's boolean state will

change. This allows the boolean state to reflect rapid changes in the raw value. A rapid

increase will result in a boolean value of 0, a rapid decrease is a boolean value of 1.

Even when a sensor is configured for some other mode (i.e. SENSOR_MODE_PERCENT),

the boolean conversion will still be carried out.

SetSensor(sensor, configuration) Function - RCX

Set the type and mode of the given sensor to the specified configuration, which must

be a special constant containing both type and mode information.

SetSensor(SENSOR_1, SENSOR_TOUCH);

NQC Programmer's Guide

Page 27

SetSensorType(sensor, type) Function - RCX

Set a sensor's type, which must be one of the predefined sensor type constants.

SetSensorType(SENSOR_1, SENSOR_TYPE_TOUCH);

SetSensorMode(sensor, mode) Function - RCX, CM, Spy

Set a sensor's mode, which should be one of the predefined sensor mode constants. A

slope parameter for boolean conversion, if desired, may be added to the mode (RCX

only).

SetSensorMode(SENSOR_1, SENSOR_MODE_RAW); // raw mode

SetSensorMode(SENSOR_1, SENSOR_MODE_RAW + 10); // slope 10

ClearSensor(sensor) Function - All

Clear the value of a sensor - only affects sensors that are configured to measure a

cumulative quantity such as rotation or a pulse count.

ClearSensor(SENSOR_1);

3.1.2 Sensor Information

There are a number of values that can be inspected for each sensor. For all of these

values the sensor must be specified by its sensor number (0, 1, or 2), and not a sensor

name (e.g. SENSOR_1).

SensorValue(n) Value - All

Returns the processed sensor reading for sensor n, where n is 0, 1, or 2. This is the

same value that is returned by the sensor names (e.g. SENSOR_1).

x = SensorValue(0); // read sensor 1

SensorType(n) Value � All

Returns the configured type of sensor n, which must be 0, 1, or 2. Only the RCX has

configurable sensors types, other targets will always return the pre-configured type of

the sensor.

NQC Programmer's Guide

Page 28

x = SensorType(0);

SensorMode(n) Value - RCX, CM, Spy

Returns the current sensor mode for sensor n, which must be 0, 1, or 2.

x = SensorMode(0);

SensorValueBool(n) Value - RCX

Returns the boolean value of sensor n, which must be 0, 1, or 2. Boolean conversion

is either done based on preset cutoffs, or a slope parameter specified by calling

SetSensorMode.

x = SensorValueBool(0);

SensorValueRaw(n) Value - RCX, Scout, Spy

Returns the raw value of sensor n, which must be 0, 1, or 2. Raw values may range

from 0 to 1023 (RCX, Spy) or 0 to 255 (Scout).

x = SensorValueRaw(0);

3.1.3 Scout Light Sensor Scout

On the Scout, SENSOR_3 refers to the built-in light sensor. Reading the light sensor's

value (with SENSOR_3) will return one of three levels: 0 (dark), 1 (normal), or 2 (bright).

The sensor's raw value can be read with SensorValueRaw(SENSOR_3), but bear in

mind that brighter light will result in a lower raw value. The conversion of the sensor's

raw value (between 0 and 1023) to one of the three levels depends on three parameters:

lower limit, upper limit, and hysteresis. The lower limit is the smallest (brightest) raw

value that is still considered normal. Values below the lower limit will be considered

bright. The upper limit is the largest (darkest) raw value that is considered normal.

Values about this limit are considered dark.

Hysteresis can be used to prevent the level from changing when the raw value hovers

near one of the limits. This is accomplished by making it a little harder to leave the dark

and bright states than it is to enter them. Specifically, the limit for moving from normal

to bright will be a little lower than the limit for moving from bright back to normal. The

NQC Programmer's Guide

Page 29

difference between these two limits is the amount of hysteresis. A symmetrical case

holds for the transition between normal and dark.

SetSensorLowerLimit(value) Function - Scout

Set the light sensor's lower limit. Value may be any expression.

SetSensorLowerLimit(100);

SetSensorUpperLimit(value) Function - Scout

Set the light sensor's upper limit. Value may be any expression.

SetSensorUpperLimit(900);

SetSensorHysteresis (value) Function - Scout

Set the light sensor's hysteresis. Value may be any expression.

SetSensorHysteresis(20);

CalibrateSensor() Function - Scout

Reads the current value of the light sensor, then sets the upper and lower limits to

12.5% above and below the current reading, and sets the hysteresis to 3.12% of the

reading.

CalibrateSensor();

3.1.4 Spybotics Sensors Spy

Spybotics uses built-in sensors instead of externally connected ones. The touch sensor on

the front of the Spybotics brick is SENSOR_1. It is normally configured in percentage

mode, so it has a value of 0 when not pressed, and a value of 100 when pressed.

SENSOR_2 is the light sensor (the connector on the back of the brick that is used to

communicate with a computer). It is normally configured in percentage mode, where

higher numbers indicate brighter light.

NQC Programmer's Guide

Page 30

3.2 Outputs

3.2.1 Primitive Calls

All of the functions dealing with outputs take a set of outputs as their first argument.

This set must be a constant. The names OUT_A, OUT_B, and OUT_C are used to identify

the three outputs. Multiple outputs can be combined by adding individual outputs

together. For example, use OUT_A+OUT_B to specify outputs A and B together. The set

of outputs must always be a compile time constant (it cannot be a variable).

Each output has three different attributes: mode, direction, and power level. The mode

can be set by calling SetOutput(outputs, mode). The mode parameter should be one of

the following constants:

Output Mode Meaning

OUT_OFF output is off (motor is prevented from turning)

OUT_ON output is on (motor will be powered)

OUT_FLOAT motor can "coast"

The other two attributes, direction and power level, may be set at any time, but only have

an effect when the output is on. The direction is set with the SetDirection(outputs,

direction) command. The direction parameter should be one of the following constants:

Direction Meaning

OUT_FWD Set to forward direction

OUT_REV Set to reverse direction

OUT_TOGGLE Switch direction to the opposite of what it is presently

The power level can range 0 (lowest) to 7 (highest). The names OUT_LOW, OUT_HALF,

and OUT_FULL are defined for use in setting power level. The level is set using the

SetPower(outputs, power) function.

Be default, all three motors are set to full power and the forward direction (but still turned

off) when a program starts.

NQC Programmer's Guide

Page 31

SetOutput(outputs, mode) Function - All

Set the outputs to the specified mode. Outputs is one or more of OUT_A, OUT_B, and

OUT_C. Mode must be OUT_ON, OUT_OFF, or OUT_FLOAT.

SetOutput(OUT_A + OUT_B, OUT_ON); // turn A and B on

SetDirection(outputs, direction) Function - All

Set the outputs to the specified direction. Outputs is one or more of OUT_A, OUT_B,

and OUT_C. Direction must be OUT_FWD, OUT_REV, or OUT_TOGGLE.

SetDirection(OUT_A, OUT_REV); // make A turn backwards

SetPower(outputs, power) Function - All

Sets the power level of the specified outputs. Power may be an expression, but

should result in a value between 0 and 7. The constants OUT_LOW, OUT_HALF, and

OUT_FULL may also be used.

SetPower(OUT_A, OUT_FULL); // A full power

SetPower(OUT_B, x);

OutputStatus(n) Value - All

Returns the current output setting for motor n. Note that n must be 0, 1, or 2 - not

OUT_A, OUT_B, or OUT_C.

x = OutputStatus(0); // status of OUT_A

3.2.2 Convenience Calls

Since control of outputs is such a common feature of programs, a number of convenience

functions are provided that make it easier to work with the outputs. It should be noted

that these commands do not provide any new functionality above the SetOutput and

SetDirection commands. They are merely convenient ways to make programs more

concise.

NQC Programmer's Guide

Page 32

On(outputs) Function - All

Turn specified outputs on. Outputs is one or more of OUT_A, OUT_B, and OUT_C

added together.

On(OUT_A + OUT_C); // turn on outputs A and C

Off(outputs) Function - All

Turn specified outputs off. Outputs is one or more of OUT_A, OUT_B, and OUT_C

added together.

Off(OUT_A); // turn off output A

Float(outputs) Function - All

Make outputs float. Outputs is one or more of OUT_A, OUT_B, and OUT_C added

together.

Float(OUT_A); // float output A

Fwd(outputs) Function - All

Set outputs to forward direction. Outputs is one or more of OUT_A, OUT_B, and

OUT_C added together.

Fwd(OUT_A);

Rev(outputs) Function - All

Set outputs to reverse direction. Outputs is one or more of OUT_A, OUT_B, and

OUT_C added together.

Rev(OUT_A);

Toggle(outputs) Function - All

Flip the direction of the outputs. Outputs is one or more of OUT_A, OUT_B, and

OUT_C added together.

Toggle(OUT_A);

NQC Programmer's Guide

Page 33

OnFwd(outputs) Function - All

Set outputs to forward direction and turn them on. Outputs is one or more of OUT_A,

OUT_B, and OUT_C added together.

OnFwd(OUT_A);

OnRev(outputs) Function - All

Set outputs to reverse direction and turn them on. Outputs is one or more of OUT_A,

OUT_B, and OUT_C added together.

OnRev(OUT_A);

OnFor(outputs, time) Function - All

Turn outputs on for a specified amount of time, then turn them off. Outputs is one or

more of OUT_A, OUT_B, and OUT_C added together. Time is measures in 10ms

increments (one second = 100) and may be any expression.

OnFor(OUT_A, x);

3.2.3 Global Control RCX2, Scout, Spy

SetGlobalOutput(outputs, mode) Function - RCX2, Scout, Spy

Disable or re-enable outputs depending on the mode parameter. If mode is OUT_OFF,

then the outputs will be turned off and disabled. While disabled any subsequent calls

to SetOutput() (including convenience functions such as On()) will be ignored.

Using a mode of OUT_FLOAT will put the outputs in float mode before disabling

them. Outputs can be re-enabled by calling SetGlobalOutput() with a mode of

OUT_ON. Note that enabling an output doesn't immediately turn it on - it just allows

future calls to SetOutput() to take effect.

SetGlobalOutput(OUT_A, OUT_OFF); // disable output A

SetGlobalOutput(OUT_A, OUT_ON); // enable output A

NQC Programmer's Guide

Page 34

SetGlobalDirection(outputs, direction) Function - RCX2, Scout, Spy

Reverses or restores the directions of outputs. The direction parameter should be

OUT_FWD, OUT_REV, or OUT_TOGGLE. Normal behavior is a global direction of

OUT_FWD. When the global direction is OUT_REV, then the actual output direction

will be the opposite of whatever the regular output calls request. Calling

SetGlobalDirection() with OUT_TOGGLE will switch between normal and

opposite behavior.

SetGlobalDirection(OUT_A, OUT_REV); // opposite direction

SetGlobalDirection(OUT_A, OUT_FWD); // normal direction

SetMaxPower(outputs, power) Function - RCX2, Scout, Spy

Sets the maximum power level allowed for the outputs. The power level may be a

variable, but should have a value between OUT_LOW and OUT_FULL.

SetMaxPower(OUT_A, OUT_HALF);

GlobalOutputStatus(n) Value - RCX2, Scout, Spy

Returns the current global output setting for motor n. Note that n must be 0, 1, or 2 -

not OUT_A, OUT_B, or OUT_C.

x = GlobalOutputStatus(0); // global status of OUT_A

EnableOutput(outputs) Function - RCX2, Scout, Spy

A helper function for enabling the specified outputs. Use OUT_A, OUT_B, or

OUT_C.

EnableOutput(OUT_A+OUT_B); // enable OUT_A and OUT_B

This is the same as using SetGlobalOutput with the OUT_ON mode.

DisableOutput(outputs) Function - RCX2, Scout, Spy

A helper function for disabling the specified outputs. Use OUT_A, OUT_B, or

OUT_C.

DisableOutput(OUT_A+OUT_B); // disable OUT_A and OUT_B

NQC Programmer's Guide

Page 35

This is the same as using SetGlobalOutput with the OUT_OFF mode.

InvertOutput(outputs) Function - RCX2, Scout, Spy

A helper function for inverting the direction of the specified outputs. Use OUT_A,

OUT_B, or OUT_C.

InvertOutput(OUT_A+OUT_B); // reverse dir OUT_A and OUT_B

This is the same as using SetGlobalDirection with the OUT_REV direction.

ObvertOutput(outputs) Function - RCX2, Scout, Spy

A helper function for returning the direction of the specified outputs to forward. Use

OUT_A, OUT_B, or OUT_C.

ObvertOutput(OUT_A+OUT_B); // normal dir OUT_A and OUT_B

This is the same as using SetGlobalDirection with the OUT_FWD direction.

3.2.4 Spybotics Outputs

Spybotics has two built-in motors. OUT_A refers to the right motor, and OUT_B is for the

left motor. OUT_C will send VLL commands out the rear LED (the one used for

communication with a computer). This allows a VLL device, such as a Micro-Scout, to

be used as a third motor for Spybotics. The same LED may be controlled using the

SendVLL() and SetLight() functions.

3.3 Sound

PlaySound(sound) Function - All

Plays one of the 6 preset RCX sounds. The sound argument must be a constant

(except on Spybotics, which allows a variable to be used). The following constants

are pre-defined for use with PlaySound: SOUND_CLICK, SOUND_DOUBLE_BEEP,

SOUND_DOWN, SOUND_UP, SOUND_LOW_BEEP, SOUND_FAST_UP.

PlaySound(SOUND_CLICK);

NQC Programmer's Guide

Page 36

The Spybotics brick has additional sound support via this function. It has 64 preset

sounds in ROM (numbered 0-63). The additional 58 constants defined for these

sounds are:

Spybot Sound Effect Constants
SOUND_SHOCKED, SOUND_FIRE_LASER, SOUND_FIRE_ELECTRONET,
SOUND_FIRE_SPINNER, SOUND_HIT_BY_LASER,
SOUND_HIT_BY_ELECTRONET, SOUND_HIT_BY_SPINNER, SOUND_TAG,
SOUND_CRASH, SOUND_FIGHT, SOUND_GOT_IT,
SOUND_GENERAL_ALERT, SOUND_OUT_OF_ENERGY_ALERT,
SOUND_LOW_ENERGY_ALERT, SOUND_SCORE_ALERT,
SOUND_TIME_ALERT, SOUND_PROXIMITY_ALERT,
SOUND_DANGER_ALERT, SOUND_BOMB_ALERT,
SOUND_FINAL_COUNTDOWN, SOUND_TICK_TOCK, SOUND_GOTO,
SOUND_SCAN, SOUND_POINT_TO, SOUND_ACTIVATE_SHIELDS,
SOUND_ACTIVATE_REFLECT, SOUND_ACTIVATE_CLOAK,
SOUND_ACTIVATE_FLASH_BLIND, SOUND_MAGNET,
SOUND_QUAD_DAMAGE, SOUND_REPULSE, SOUND_TURBO,
SOUND_FREEZE, SOUND_SLOW, SOUND_REVERSE, SOUND_DIZZY,
SOUND_BOOST, SOUND_DEACTIVATE_SHIELDS,
SOUND_DEACTIVATE_REFLECT, SOUND_DEACTIVATE_CLOAK,
SOUND_REFLECT, SOUND_EXPLOSION, SOUND_BIG_EXPLOSION,
SOUND_PLACE_BOMB, SOUND_HIT_BY_WIND, SOUND_OUCH,
SOUND_GEIGER, SOUND_WHISTLE, SOUND_IM_IT, SOUND_HELP,
SOUND_SIREN, SOUND_BURNT, SOUND_GRINDED, SOUND_SMACKED,
SOUND_TRILL_UP, SOUND_TRILL_DOWN, SOUND_YELL, SOUND_WHISPER

A special constant, SOUND_NONE, is also defined for the Spybotics target to indicate

that no sound should be played.

PlayTone(frequency, duration) Function - All

Plays a single tone of the specified frequency and duration. The frequency is in Hz

and can be a variable for RCX2, Scout, and Spybotics, but has to be constant for RCX

and CyberMaster. The duration is in 100ths of a second and must be a constant.

PlayTone(440, 50); // Play 'A' for one half second

MuteSound() Function - RCX2, Scout, Spy

Stops all sounds and tones from being played.

MuteSound();

UnmuteSound() Function - RCX2, Scout, Spy

Restores normal operation of sounds and tones.

NQC Programmer's Guide

Page 37

UnmuteSound();

ClearSound() Function - RCX2, Spy

Removes any pending sounds from the sound buffer.

ClearSound();

SelectSounds(group) Function - Scout

Selects which group of system sounds should be used. The group must be a constant.

SelectSounds(0);

3.4 LCD Display RCX

The RCX has seven different display modes as shown below. The RCX defaults to

DISPLAY_WATCH.

Mode LCD Contents

DISPLAY_WATCH show the system "watch"

DISPLAY_SENSOR_1 show value of sensor 1

DISPLAY_SENSOR_2 show value of sensor 2

DISPLAY_SENSOR_3 show value of sensor 3

DISPLAY_OUT_A show setting for output A

DISPLAY_OUT_B show setting for output B

DISPLAY_OUT_C show setting for output C

The RCX2 adds an eighth display mode - DISPLAY_USER. User display mode

continuously reads a source value and updates the display. It can optionally display a

decimal point at any position within the number. This allows the display to give the

illusion of working with fractions even though all values are stored internally as integers.

For example, the following call will set the user display to show the value 1234 with two

digits appearing after the decimal point, resulting in "12.34" appearing on the LCD.

SetUserDisplay(1234, 2);

The following short program illustrates the update of the user display:

task main()
{

NQC Programmer's Guide

Page 38

 ClearTimer(0);
 SetUserDisplay(Timer(0), 0);
 until(false);
}

Because the user display mode continuously updates the LCD, there are certain

restrictions on the source value. If a variable is used it must be assigned to a global

storage location. The best way to ensure this is to make the variable a global one. There

can also be some strange side effects. For example, if a variable is being displayed and

later used as the target of a calculation, it is possible for the display to show some

intermediate results of the calculation:

int x;
task main()
{
 SetUserDisplay(x, 0);
 while(true)
 {
 // display may briefly show 1!
 x = 1 + Timer(0);
 }
}

SelectDisplay(mode) Function - RCX

Select a display mode.

SelectDisplay(DISPLAY_SENSOR_1); // view sensor 1

SetUserDisplay(value, precision) Function - RCX2

Set the LCD display to continuously monitor the specified value. Precision specifies

the number of digits to the right of the decimal point. A precision of zero shows no

decimal point.

SetUserDisplay(Timer(0), 0); // view timer 0

3.5 Communication

3.5.1 Messages RCX, Scout

The RCX and Scout can send and receive simple messages using IR. A message can

have a value from 0 to 255, but the use of message 0 is discouraged. The most recently

NQC Programmer's Guide

Page 39

received message is remembered and can be accessed as Message(). If no message has

been received, Message() will return 0. Note that due to the nature of IR

communication, receiving is disabled while a message is being transmitted.

ClearMessage() Function - RCX, Scout

Clear the message buffer. This facilitates detection of the next received message

since the program can then wait for Message() to become non-zero:

ClearMessage(); // clear out the received message
until(Message() > 0); // wait for next message

SendMessage(message) Function - RCX, Scout

Send an IR message. Message may be any expression, but the RCX can only send

messages with a value between 0 and 255, so only the lowest 8 bits of the argument

are used.

SendMessage(3); // send message 3
SendMessage(259); // another way to send message 3

SetTxPower(power) Function - RCX, Scout

Set the power level for IR transmission. Power should be one of the constants

TX_POWER_LO or TX_POWER_HI.

MessageParam() Value - Swan

Read the message parameter. The Swan firmware supports a 2 byte message

parameter in addition to the single byte supported by the RCX firmware.

x = MessageParam(); // read the rcvd msg param value

SendMessageWithParam(const int &m, const int &p) Function - Swan

Send an IR message with an additional parameter. The first parameter is restricted a

single byte while the second parameter can be two bytes.

SendMessageWithParam(3, 1024);

NQC Programmer's Guide

Page 40

SetMessageByteParam(const int m, const int p) Function - Swan

Set the IR message and its parameter using constants. The parameter must be a single

byte value.

SetMessageByteParam(3, 43);

SetMessageWordParam(const int m, const int p) Function - Swan

Set the IR message and its parameter using constants. The parameter can be 2 bytes.

SetMessageWordParam(3, 1024);

SetMessageVariableParam(const int &m, const int &p) Function - Swan

Set the IR message and its parameter using variables. The parameter can be 2 bytes.

SetMessageVariableParam(x, y);

3.5.2 Serial RCX2, Spy

The RCX2 and Spybotics can transmit serial data out the IR port. Prior to transmitting

any data, the communication and packet settings must be specified. Then, for each

transmission, data should be placed in the transmit buffer, then sent using the

SendSerial() function.

For the RCX2 the communication settings are set with SetSerialComm. This

determines how bits are sent over IR. Possible values are shown below.

Option Effect

SERIAL_COMM_DEFAULT default settings

SERIAL_COMM_4800 4800 baud

SERIAL_COMM_DUTY25 25% duty cycle

SERIAL_COMM_76KHZ 76kHz carrier

The default is to send data at 2400 baud using a 50% duty cycle on a 38kHz carrier. To

specify multiple options (such as 4800 baud with 25% duty cycle), combine the

individual options using bitwise or (SERIAL_COMM_4800 | SERIAL_COMM_DUTY25).

NQC Programmer's Guide

Page 41

The RCX2 also allows you to set the packet settings with SetSerialPacket. This

controls how bytes are assembled into packets. Possible values are shown below.

Option Effect

SERIAL_PACKET_DEFAULT no packet format - just data bytes

SERIAL_PACKET_PREAMBLE send a packet preamble

SERIAL_PACKET_NEGATED follow each byte with its complement

SERIAL_PACKET_CHECKSUM include a checksum for each packet

SERIAL_PACKET_RCX standard RCX format (preamble,
negated data, and checksum)

Note that negated packets always include a checksum, so the

SERIAL_PACKET_CHECKSUM option is only meaningful when

SERIAL_PACKET_NEGATED is not specified. Likewise the preamble, negated, and

checksum settings are implied by SERIAL_PACKET_RCX.

The transmit buffer can hold up to 16 data bytes. These bytes may be set using

SetSerialData, then transmitted by calling SendSerial. For example, the following

code sends two bytes (0x12 and 0x34) out the serial port:

SetSerialComm(SERIAL_COMM_DEFAULT);
SetSerialPacket(SERIAL_PACKET_DEFAULT);
SetSerialData(0, 0x12);
SetSerialData(1, 0x34);
SendSerial(0, 2);

Spybotics uses a different mechanism for configuring the serial transmission parameters.

Use SetSerialType to specify the transmission type with the constants described in the

following table.

Option Effect

SERIAL_TYPE_SPYBOT Spybotics type

SERIAL_TYPE_RCX RCX type

SERIAL_TYPE_RC RC type

SERIAL_TYPE_USER User-defined type

NQC Programmer's Guide

Page 42

Use SetSerialBaud to specify the baud rate with the constants described in the

following table.

Option Effect

SERIAL_BAUD_2400 2400 baud

SERIAL_BAUD_4800 4800 baud

SERIAL_BAUD_9600 9600 baud

Use SetSerialChannel to specify the transmission channel with the constants

described in the following table.

Option Effect

SERIAL_CHANNEL_IR IR channel

SERIAL_CHANNEL_PC PC channel (visible light)

Use SetSerialPreamblePos to specify the position of the preamble in the 16 bytes of

serial data. Use SetSerialPreambleLen to specify the length of the preamble. Use

SetSerialChecksum to specify the checksum type with the constants described in the

following table.

Option Effect

SERIAL_CHECKSUM_NONE No checksum

SERIAL_CHECKSUM_SUM Sum checksum

SERIAL_CHECKSUM_ZERO_SUM Zero sum checksum

Use SetSerialBiPhase to specify the bi-phase mode with the constants described in

the following table.

Option Effect

SERIAL_BIPHASE_OFF No bi-phase

SERIAL_BIPHASE_ON Use bi-phase

SetSerialComm(settings) Function - RCX2

Set the communication settings, which determine how the bits are sent over IR

NQC Programmer's Guide

Page 43

SetSerialComm(SERIAL_COMM_DEFAULT);

SetSerialPacket(settings) Function - RCX2

Set the packet settings, which control how bytes are assembled into packets.

SetSerialPacket(SERIAL_PACKET_DEFAULT);

SetSerialData(n, value) Function - RCX2, Spy

Set one byte of data in the transmit buffer. N is the index of the byte to set (0-15),

and value can be any expression.

SetSerialData(3, x); // set byte 3 to x

SerialData(n) Value - RCX2, Spy

Returns the value of a byte in the transmit buffer (NOT received data). N must be a

constant between 0 and 15.

x = SerialData(7); // read byte #7

SendSerial(start, count) Function - RCX2, Spy

Use the contents of the transmit buffer to build a packet and send it out the IR port

(according to the current packet and communication settings). Start and count are

both constants that specify the first byte and the number of bytes within the buffer to

be sent.

SendSerial(0,2); // send first two bytes in buffer

InitSpybotComm() Function - RCX2

Use this function to configure the serial communication registers in preparation for

sending messages using the Spybot protocol.

InitSpybotComm(); // prepare IR using Spybot protocol

SendSpybotMsg() Function - RCX2

Use this function to send a 7 byte Spybot message which was previously set via a call

to SetSpybotMessage.

SendSpybotMsg();

NQC Programmer's Guide

Page 44

SetSpybotMessage(mode, myID, addr, cmd, hi, lo) Function - RCX2

Use this function to set the contents of a Spybot message. The message can then be

sent repeatedly via calls to SendSpybotMsg.

SetSpybotMessage(MSG_BROADCAST, 9, 0, CMD_FIRE_LASER, 1,
100);

SendSpybotMessage(mode, myID, addr, cmd, hi, lo) Function - RCX2

Use this function to send a 7 byte Spybot message. This function calls

InitSpybotComm, SetSpybotMessage, and SendSpybotMsg in sequence.

SendSpybotMessage(MSG_BROADCAST, 9, 0, CMD_FIRE_LASER, 1,
100);

SendSpybotCtrlMsg() Function - RCX2

Use this function to send a 2 byte Spybot controller message which was previously

set via a call to SetSpybotCtrlMessage.

SendSpybotCtrlMsg();

SetSpybotCtrlMessage(nMyID, nMsg) Function - RCX2

Use this function to set the contents of a Spybot controller message. The message can

then be sent repeatedly via calls to SendSpybotCtrlMsg.

SetSpybotCtrlMessage(ID_CTRL_1, SPY_CTRL_BTN_1);

SendSpybotCtrlMessage(nMyID, nMsg) Function - RCX2

Use this function to send a 2 byte Spybot controller message. This function calls

InitSpybotComm, SetSpybotCtrlMessage, and SendSpybotCtrlMsg in

sequence.

SendSpybotCtrlMessage(ID_CTRL_1, SPY_CTRL_BTN_1);

SendSpybotCtrlPingMsg() Function - RCX2

Use this function to send a 2 byte Spybot controller ping message which was

previously set via a call to SetSpybotCtrlPingMessage.

NQC Programmer's Guide

Page 45

SendSpybotCtrlPingMsg();

SetSpybotCtrlPingMessage(nID) Function - RCX2

Use this function to set the contents of a Spybot controller ping message. The

message can then be sent repeatedly via calls to SendSpybotCtrlPingMsg.

SetSpybotCtrlPingMessage(ID_CTRL_1);

SendSpybotCtrlPingMessage(nID) Function - RCX2

Use this function to send a 2 byte Spybot controller ping message. This function calls

InitSpybotComm, SetSpybotCtrlPingMessage, and

SendSpybotCtrlPingMsg in sequence.

SendSpybotCtrlPingMessage(ID_CTRL_1);

SendSpybotPingMsg() Function - RCX2

Use this function to send a 4 byte Spybot ping message which was previously set via

a call to SetSpybotPingMessage.

SendSpybotPingMsg();

SetSpybotPing(nLinkID, nMyID, nInfo) Function � RCX2

Use this function to set the contents of a Spybot ping message. The message can then

be sent repeatedly via calls to SendSpybotPingMsg.

SetSpybotPingMessage(ID_CTRL_1, ID_MIN_BOT+1, 10);

SendSpybotPing(nLinkID, nMyID, nInfo) Function - RCX2

Use this function to send a 2 byte Spybot ping message. This function calls

InitSpybotComm, SetSpybotPingMessage, and SendSpybotPingMsg in

sequence.

SendSpybotPingMessage(ID_CTRL_1, ID_MIN_BOT+1, 10);

InitRCComm() Function - RCX2

Use this function to configure the serial communication registers in preparation for

sending messages using the Spybot RC protocol.

NQC Programmer's Guide

Page 46

InitRCComm(); // prepare to send IR using RC protocol

SendRCMsg() Function - RCX2

Use this function to send a 4 byte RC message which was previously set via a call to

SetRCMessage.

SendRCMsg();

SetRCMessage(nChannel, nLeft, nRight) Function - RCX2

Use this function to set the contents of a Spybot RC message. The message can then

be sent repeatedly via calls to SendRCMsg.

SetRCMessage(RC_CHANNEL_2, RC_CMD_FWD, RC_CMD_FWD);

SendRCMessage(nChannel, nLeft, nRight) Function - RCX2

Use this function to send a 2 byte Spybot ping message. This function calls

InitRCComm, SetRCMessage, and SendRCMsg in sequence.

SendRCMessage(RC_CHANNEL_2, RC_CMD_FWD, RC_CMD_FWD);

DefaultSerialComm() Value - Swan

Returns the default UART transmit parameter configuration.

x = DefaultSerialComm(); // read default UART xmit config

DefaultSerialPacket() Value - Swan

Returns the default packet data formatting configuration.

x = DefaultSerialPacket(); // read default packet config

SetDefaultSerialComm(settings) Function - Swan

Set the default communication settings, which determine how the bits are sent over IR

SetDefaultSerialComm(SERIAL_COMM_DEFAULT);

SetDefaultSerialPacket(settings) Function - Swan

Set the default packet settings, which control how bytes are assembled into packets.

SetDefaultSerialPacket(SERIAL_PACKET_DEFAULT);

NQC Programmer's Guide

Page 47

SerialType() Value - Spy

Returns the type of the serial transmission.

x = SerialType(); // SERIAL_TYPE_USER ??

SetSerialType(type) Function - Spy

Sets the type of the serial transmission.

SetSerialType(SERIAL_TYPE_USER); // set type to user

Use one of the following constants: SERIAL_TYPE_SPYBOT, SERIAL_TYPE_RCX,

SERIAL_TYPE_RC, SERIAL_TYPE_USER.

SerialBaud() Value - Spy

Returns the baud rate of the serial transmission.

x = SerialBaud(); // SERIAL_BAUD_2400 ??

SetSerialBaud(baud) Function - Spy

Sets the baud rate of the serial transmission.

SetSerialBaud(SERIAL_BAUD_2400); // set baud to 2400

Use one of the following constants: SERIAL_BAUD_2400, SERIAL_BAUD_4800,

SERIAL_BAUD_9600.

SerialChannel() Value - Spy

Returns the transmission channel.

x = SerialChannel(); // SERIAL_CHANNEL_PC ??

SetSerialChannel(channel) Function - Spy

Sets the transmission channel.

SetSerialChannel(SERIAL_CHANNEL_IR); // set channel to IR

NQC Programmer's Guide

Page 48

Use one of the following constants: SERIAL_CHANNEL_IR, SERIAL_CHANNEL_PC.

SerialPreamblePos() Value - Spy

Returns the preamble position within the serial data buffer.

x = SerialPreamblePos();

SetSerialPreamblePos(n) Function - Spy

Sets the position of the preamble within the serial data buffer.

SetSerialPreamblePos(12); // set preamble pos to 12

SerialPreambleLen() Value - Spy

Returns the preamble length.

x = SerialPreambleLen();

SetSerialPreambleLen(n) Function - Spy

Sets the length of the preamble.

SetSerialPreambleLen(3); // set preamble length to 3

SerialChecksum() Value - Spy

Returns the transmission checksum type.

x = SerialChecksum(); // SERIAL_CHECKSUM_SUM ??

SetSerialChecksum(check) Function - Spy

Sets the transmission checksum type.

SetSerialChecksum(SERIAL_CHECKSUM_SUM); // use Sum checksum

Use one of the following constants: SERIAL_CHECKSUM_NONE,

SERIAL_CHECKSUM_SUM, SERIAL_CHECKSUM_ZERO_SUM.

SerialBiPhase() Value - Spy

Returns the transmission bi-phase mode.

x = SerialBiPhase(); // SERIAL_BIPHASE_OFF ??

NQC Programmer's Guide

Page 49

SetSerialBiPhase(mode) Function - Spy

Sets the transmission bi-phase mode.

SetSerialBiPhase(SERIAL_BIPHASE_OFF); // no bi-phase

Use one of the following constants: SERIAL_BIPHASE_OFF,

SERIAL_BIPHASE_ON.

3.5.3 VLL Scout, Spy

SendVLL(value) Function � Scout, Spy

Sends a Visible Light Link (VLL) command, which can be used to communicate with

the MicroScout or Code Pilot. The specific VLL commands are described in the

Scout SDK.

SendVLL(4); // send VLL command #4

3.6 Timers

All targets provide several independent timers with 100ms resolution (10 ticks per

second). The Scout provides 3 such timers while the RCX, Swan, CyberMaster and

Spybotics provide 4. The timers wrap around to 0 after 32767 ticks (about 55 minutes).

The value of a timer can be read using Timer(n), where n is a constant that determines

which timer to use (0-2 for Scout, 0-3 for the others). RCX2, Swan, and Spybotics

provide the ability to read the same timers with higher resolution by using

FastTimer(n), which returns the timer's value with 10ms resolution (100 ticks per

second).

ClearTimer(n) Function - All

Reset the specified timer to 0.

ClearTimer(0);

Timer(n) Value - All

Return the current value of specified timer (in 100ms resolution).

NQC Programmer's Guide

Page 50

x = Timer(0);

SetTimer(n, value) Function - RCX2, Spy

Set a timer to a specific value (which may be any expression).

SetTimer(0, x);

FastTimer(n) Value - RCX2, Spy

Return the current value of specified timer in 10ms resolution.

x = FastTimer(0);

3.7 Counters RCX2, Scout, Spy

Counters are like very simple variables that can be incremented, decremented, and

cleared. The Scout provides two counters (0 and 1), while RCX2, Swan, and Spybotics

provide three (0, 1, and 2). In the case of RCX2, Swan, and Spybotics, these counters are

overlapped with global storage locations 0-2, so if they are going to be used as counters, a

#pragma reserve should be used to prevent NQC from using the storage location for a

regular variable. For example, to use counter 1:

#pragma reserve 1

ClearCounter(n) Function - RCX2, Scout, Spy

Reset counter n to 0. N must be 0 or 1 for Scout, 0-2 for RCX2 and Spybotics.

ClearCounter(1);

IncCounter(n) Function - RCX2, Scout, Spy

Increment counter n by 1. N must be 0 or 1 for Scout, 0-2 for RCX2 and Spybotics.

IncCounter(1);

DecCounter(n) Function - RCX2, Scout, Spy

Decrement counter n by 1. N must be 0 or 1 for Scout, 0-2 for RCX2 and Spybotics.

DecCounter(1);

NQC Programmer's Guide

Page 51

Counter(n) Value - RCX, Scout, Spy

Return the current value of counter n. N must be 0 or 1 for Scout, 0-3 for RCX2 and

Spybotics.

x = Counter(1);

3.8 Access Control RCX2, Scout, Spy

Access control is implemented primarily by the acquire statement. The SetPriority

function can be used to set a task's priority, and the following constants may be used to

specify resources in an acquire statement. Note that the user defined resources are only

available on the RCX2 and Swan.

Constant Resource

ACQUIRE_OUT_A,
ACQUIRE_OUT_B,
ACQUIRE_OUT_C

outputs

ACQUIRE_SOUND sound

ACQUIRE_LED LEDs (Spybotics
only)

ACQUIRE_USER_1,
ACQUIRE_USER_2,
ACQUIRE_USER_3,
ACQUIRE_USER_4

user defined -
RCX2 and Swan
only

SetPriority(p) Function - RCX2, Scout, Spy

Set a task's priority to p, which must be a constant. RCX2, Swan, and Spybotics

support priorities 0-255, while Scout supports priorities 0-7. Note that lower numbers

are higher priority.

SetPriority(1);

3.9 Events RCX2, Scout

Although the RCX2, Swan, Scout, and Spybotics share a common event mechanism, the

RCX2, Swan, and Spybotics provide 16 completely configurable events while the Scout

NQC Programmer's Guide

Page 52

has 15 predefined events. The only functions common to both targets are the commands

to inspect or force events.

ActiveEvents(task) Value - RCX2, Scout, Spy

Return the set of events that have been triggered for a given task.

x = ActiveEvents(0);

CurrentEvents() Value - RCX2, Spy

Return the set of events that have been triggered for the active task.

x = CurrentEvents();

Event(events) Function - RCX2, Scout, Spy

Manually triggers the specified events. This can be useful in testing event handling

of the program, or in other cases simulating an event based on other criteria. Note

that the specification of the events themselves is slightly different between brick

types. RCX2, Swan, and Spybotics use the EVENT_MASK macro to compute an event

mask, while Scout has predefined masks.

Event(EVENT_MASK(3)); // triggering an RCX2 event
Event(EVENT_1_PRESSED); // triggering a Scout event

3.9.1 Configurable Events RCX2, Spy

RCX2, Swan, and Spybotics provide an extremely flexible event system. There are 16

events, each of which can be mapped to one of several event sources (the stimulus that

can trigger the event), and an event type (the criteria for triggering). A number of other

parameters may also be specified depending on the event type. For all of the

configuration calls an event is identified by its event number - a constant from 0 to 15.

Legal event sources are sensors, timers, counters, or the message buffer. An event is

configured by calling SetEvent(event, source, type), where event is a constant

event number (0-15), source is the event source itself, and type is one of the types shown

below (some combinations of sources and types are illegal).

NQC Programmer's Guide

Page 53

Event Type Condition Event Source
EVENT_TYPE_PRESSED value becomes on sensors only
EVENT_TYPE_RELEASED value becomes off sensors only
EVENT_TYPE_PULSE value goes from off to

on to off
sensors only (RCX2)

EVENT_TYPE_EDGE value goes from on to
off or vice versa

sensors only (RCX2)

EVENT_TYPE_FASTCHANGE value changes rapidly sensors only (RCX2)
EVENT_TYPE_LOW value becomes low any
EVENT_TYPE_NORMAL value becomes normal any
EVENT_TYPE_HIGH value becomes high any
EVENT_TYPE_CLICK value from low to high

back to low
any

EVENT_TYPE_DOUBLECLICK two clicks within a
certain time

Any (RCX2)

EVENT_TYPE_MESSAGE new message received Message() only (RCX2)
EVENT_TYPE_ENTRY_FOUND World entry found VLL() only (Spy)
EVENT_TYPE_MSG_DISCARD Message discarded VLL() only (Spy)
EVENT_TYPE_MSG_RECEIVED Message received VLL() only (Spy)
EVENT_TYPE_VLL_MSG_RECEIVED Message received VLL() only (Spy)
EVENT_TYPE_ENTRY_CHANGED World entry changed VLL() only (Spy)
EVENT_TYPE_4 Event type 4 any (Swan)
EVENT_TYPE_5 Event type 5 any (Swan)
EVENT_TYPE_6 Event type 6 any (Swan)
EVENT_TYPE_VIRTUAL_MOTOR_CH
ANGE

Virtual motor changes any (Swan)

EVENT_TYPE_VIRTUAL_MOTOR_PO
WER

Virtual motor power any (Swan)

EVENT_TYPE_VIRTUAL_SENSOR_D
EF

Virtual sensor def any (Swan)

EVENT_TYPE_INFRARED_IDLE Infrared goes idle any (Swan)
EVENT_TYPE_RESET reset any (Swan)

NQC Programmer's Guide

Page 54

The first four event types make use of a sensor's boolean value, thus are most useful with

touch sensors. For example, to set event #2 to be triggered when a touch sensor on port 1

is pressed, the following call could be made:

SetEvent(2, SENSOR_1, EVENT_TYPE_PRESSED);

In order for EVENT_TYPE_PULSE or EVENT_TYPE_EDGE to be used, the sensor must be

configured in the SENSOR_MODE_PULSE or SENSOR_MODE_EDGE respectively.

EVENT_TYPE_FASTCHANGE should be used with sensors that have been configured with

a slope parameter. When the raw value changes faster than the slope parameter an

EVENT_TYPE_FASTCHANGE event will be triggered.

The next three types (EVENT_TYPE_LOW, EVENT_TYPE_NORMAL, and

EVENT_TYPE_HIGH) convert an event source's value into one of three ranges (low,

normal, or high), and trigger an event when the value moves from one range into another.

The ranges are defined by the lower limit and upper limit for the event. When the source

value is lower than the lower limit, the source is considered low. When the source value

is higher than the upper limit, the source is considered high. The source is normal

whenever it is between the limits.

The following example configures event #3 to trigger when the sensor on port 2's value

goes into the high range. The upper limit is set for 80, and the lower limit is set for 50.

This configuration is typical of how an event can be triggered when a light sensor

detected a bright light.

SetEvent(3, SENSOR_2, EVENT_TYPE_HIGH);
SetLowerLimit(3, 50);
SetUpperLimit(3, 80);

A hysteresis parameter can be used to provide more stable transitions in cases where the

source value may jitter. Hysteresis works by making the transition from low to normal a

little higher than the transition from normal to low. In a sense, it makes it easier to get

into the low range than get out of it. A symmetrical case applies to the transition between

normal and high.

A transition from low to high back to low will trigger a EVENT_TYPE_CLICK event,

provided that the entire sequence is faster than the click time for the event. If two

NQC Programmer's Guide

Page 55

successive clicks occur and the time between clicks is also less than the click time, then

an EVENT_TYPE_DOUBLECLICK event will be triggered. The system also keeps track of

the total number of clicks for each event.

The last event type, EVENT_TYPE_MESSAGE, is only valid when Message() is used as

the event source. The event will be triggered whenever a new message arrives (even if its

value is the same as a previous message).

The monitor statement and some API functions (such as ActiveEvents() or Event()) need

to handle multiple events. This is done by converting each event number to an event

mask, and then combining the masks with a bitwise OR. The EVENT_MASK(event)

macro converts an event number to a mask. For example, to monitor events 2 and 3, the

following statement could be used:

monitor(EVENT_MASK(2) | EVENT_MASK(3))

SetEvent(event, source, type) Function - RCX2, Spy

Configure an event (a number from 0 to 15) to use the specified source and type.

Both event and type must be constants, and source should be the actual source

expression.

SetEvent(2, Timer(0), EVENT_TYPE_HIGH);

ClearEvent(event) Value - RCX2, Spy

Clear the configuration for the specified event. This prevents it from triggering until

it is re-configured.

ClearEvent(2); // clear event #2

ClearAllEvents() Value - RCX2, Spy

Clear the configurations for all events.

ClearAllEvents();

EventState(event) Value - RCX2, Spy

Return the state of a given event. States are 0: Low, 1: Normal, 2: High, 3:

Undefined, 4: Start calibrating, 5: Calibrating in process.

NQC Programmer's Guide

Page 56

x = EventState(2);

CalibrateEvent(event, lower, upper, hyst) Function - RCX2, Spy

Calibrate the event by taking an actual sensor reading and then applying the specified

lower, upper, and hyst ratios to determine actual limits and hysteresis value. The

specific formulas for calibration depend on sensor type and are explained in the

LEGO SDK. Calibration is not instantaneous - EventState() can be checked to

determine when the calibration is complete (typically about 50ms).

CalibrateEvent(2, 50, 50, 20);
until(EventState(2) != 5); // wait for calibration

SetUpperLimit(event, limit) Function - RCX2, Spy

Set the upper limit for the event, where event is a constant event number and limit can

be any expression.

SetUpperLimit(2, x); // set upper limit for #2 to x

UpperLimit(event) Value - RCX2, Spy

Return the current upper limit for the specified event number.

x = UpperLimit(2); // get upper limit for event 2

SetLowerLimit(event, limit) Function - RCX2, Spy

Set the lower limit for the event, where event is a constant event number and limit can

be any expression.

SetLowerLimit(2, x); // set lower limit for #2 to x

LowerLimit(event) Value - RCX2, Spy

Return the current lower limit for the specified event number.

x = LowerLimit(2); // get lower limit for event 2

SetHysteresis(event, value) Function - RCX2, Spy

Set the hysteresis for the event, where event is a constant event number and value can

be any expression.

NQC Programmer's Guide

Page 57

SetHysteresis(2, x);

Hysteresis(event) Value - RCX2, Spy

Return the current hysteresis for the specified event number.

x = Hysteresis(2);

SetClickTime(event, value) Function - RCX2, Spy

Set the click time for the event, where event is a constant event number and value can

be any expression. The time is specified in increments of 10ms, so one second would

be a value of 100.

SetClickTime(2, x);

ClickTime(event) Value - RCX2, Spy

Return the current click time for the specified event number.

x = ClickTime(2);

SetClickCounter(event, value) Function - RCX2

Set the click counter for the event, where event is a constant event number and value

can be any expression.

SetClickCounter(2, x);

ClickCounter(event) Value - RCX2

Return the current click counter for the specified event number.

x = ClickCounter(2);

3.9.2 Scout Events Scout

The Scout provides 15 events, each of which has a predefined meaning as shown in the

table below.

Event Name Condition

EVENT_1_PRESSED sensor 1 pressed

NQC Programmer's Guide

Page 58

EVENT_1_RELEASED sensor 1 released

EVENT_2_PRESSED sensor 2 pressed

EVENT_2_RELEASED sensor 2 released

EVENT_LIGHT_HIGH light sensor "high"

EVENT_LIGHT_NORMAL light sensor "normal"

EVENT_LIGHT_LOW light sensor "low"

EVENT_LIGHT_CLICK low to high to low

EVENT_LIGHT_DOUBLECLICK two clicks

EVENT_COUNTER_0 counter 0 over limit

EVENT_COUNTER_1 counter 1 over limit

EVENT_TIMER_0 timer 0 over limit

EVENT_TIMER_1 timer 1 over limit

EVENT_TIMER_2 timer 2 over limit

EVENT_MESSAGE new message received

The first four events are triggered by touch sensors connected to the two sensor ports.

EVENT_LIGHT_HIGH, EVENT_LIGHT_NORMAL, and EVENT_LIGHT_LOW are triggered

by the light sensor's value changing from one range to another. The ranges are defined

by SetSensorUpperLimit, SetSensorLowerLimit, and SetSensorHysteresis

which were described previously.

EVENT_LIGHT_CLICK and EVENT_LIGHT_DOUBLECLICK are also triggered by the light

sensor. A click is a transition from low to high and back to low within a certain amount

of time, called the click time.

Each counter has a counter limit. When the counter exceeds this limit,

EVENT_COUNTER_0 or EVENT_COUNTER_1 is triggered. Timers also have a limit, and

they generate EVENT_TIMER_0, EVENT_TIMER_1, and EVENT_TIMER_2.

EVENT_MESSAGE is triggered whenever a new IR message is received.

NQC Programmer's Guide

Page 59

SetSensorClickTime(value) Function - Scout

Set the click time used to generate events from the light sensor. Value should be

specified in increments of 10ms, and may be any expression.

SetSensorClickTime(x);

SetCounterLimit(n, value) Function - Scout

Set the limit for counter n. N must be 0 or 1, and value may be any expression.

SetCounterLimit(0, 100); // set counter 0 limit to 100

SetTimerLimit(n, value) Function - Scout

Set the limit for timer n. N must be 0, 1, or 2, and value may be any expression.

SetTimerLimit(1, 100); // set timer 1 limit to 100

3.10 Data Logging RCX

The RCX contains a datalog which can be used to store readings from sensors, timers,

variables, and the system watch. Before adding data, the datalog first needs to be created

using the CreateDatalog(size) command. The 'size' parameter must be a constant and

determines how many data points the datalog can hold.

CreateDatalog(100); // datalog for 100 points

Values can then be added to the datalog using AddToDatalog(value). When the datalog

is uploaded to a computer it will show both the value itself and the source of the value

(timer, variable, etc). The datalog directly supports the following data sources: timers,

sensor values, variables, and the system watch. Other data types (such as a constant or

random number) may also be logged, but in this case NQC will first move the value into

a variable and then log the variable. The values will still be captured faithfully in the

datalog, but the sources of the data may be a bit misleading.

AddToDatalog(Timer(0)); // add timer 0 to datalog
AddToDatalog(x); // add variable 'x'
AddToDatalog(7); // add 7 - will look like a variable

The RCX itself cannot read values back out of the datalog. The datalog must be

uploaded to a host computer. The specifics of uploading the datalog depend on the NQC

NQC Programmer's Guide

Page 60

environment being used. For example, in the command line version of NQC, the

following commands will upload and print the datalog:

nqc –datalog
nqc -datalog_full

The Swan (and the standard LEGO firmware version 3.30 which is available via the

ROBOLAB software) adds the ability to read values and types out of the datalog. New

firmware sources are used to implement this functionality. Use the DatalogType,

DatalogValue, and DatalogByte functions to programmatically access these sources.

CreateDatalog(size) Function - RCX

Create a datalog of the specified size (which must be a constant). A size of 0 clears

the existing datalog without creating a new one.

CreateDatalog(100); // datalog for 100 points

AddToDatalog(value) Function - RCX

Add the value, which may be an expression, to the datalog. If the datalog is full the

call has no effect.

AddToDatalog(x);

UploadDatalog(start, count) Function - RCX

Initiate and upload of count data points beginning at start. This is of relatively little

use since the host computer usually initiates the upload.

UploadDatalog(0, 100); // upload entire 100 point log

DatalogType(n) Value � Swan (and RCX2+)

Read or write the 8-bit datalog type specified by the parameter. If a variable is used

the type is read or written indirectly.

x = DatalogType(0);

NQC Programmer's Guide

Page 61

DatalogValue(n) Value � Swan (and RCX2+)

Read or write the 16-bit datalog value specified by the parameter. If a variable is

used the value is read or written indirectly.

x = DatalogValue(0);

DatalogByte(n) Value � Swan (and RCX2+)

Read or write the 8-bit datalog byte specified by the parameter. If a variable is used

the byte is read or written indirectly.

x = DatalogByte(0);

3.11 General Features

Wait(time) Function - All

Make a task sleep for specified amount of time (in 100ths of a second). The time

argument may be an expression or a constant:

Wait(100); // wait 1 second
Wait(Random(100)); // wait random time up to 1 second

StopAllTasks() Function - All

Stop all currently running tasks. This will halt the program completely, so any code

following this command will be ignored.

StopAllTasks(); // stop the program

Random(n) Value - All

Return a random number between 0 and n. N must be a constant.

x = Random(10);

SetRandomSeed(n) Function - RCX2, Spy

Seed the random number generator with n. N may be an expression.

SetRandomSeed(x); // seed with value of x

NQC Programmer's Guide

Page 62

BatteryLevel() Value - RCX2, Spy

Return the battery level in millivolts.

x = BatteryLevel();

FirmwareVersion() Value - RCX2, Spy

Return the firmware version as an integer. For example, version 3.2.6 is 326.

x = FirmwareVersion();

SetSleepTime(minutes) Function - All

Set the sleep timeout the requested number of minutes (which must be a constant).

Specifying 0 minutes disables the sleep feature.

SetSleepTime(5); // sleep after 5 minutes
SetSleepTime(0); // disable sleep time

SleepNow() Function - All

Force the device to go to sleep. Only works if the sleep time is non-zero.

SleepNow(); // go to sleep

Indirect(n) Value - RCX2, Spy

Read the value of a variable indirectly. The parameter is the address of a global

variable whose value is the address of the variable you wish to read.

x = Indirect(0); // the value of var pointed to by var 0

SetIndirectVar(const int &v, const int &n) Value - RCX2, Spy

Set the value of a variable indirectly. The first parameter is the global variable whose

value is the address of the variable you wish to set. The second parameter is the value

you wish to set it to.

SetIndirectVar(x, 200);

NQC Programmer's Guide

Page 63

3.12 RCX Specific Features

Program() Value - RCX

Number of the currently selected program.

x = Program();

SelectProgram(n) Function - RCX2

Select the specified program and start running it. Note that programs are numbered

0-4 (not 1-5 as displayed on the LCD).

SelectProgram(3);

Watch() Value - RCX

Return the value of the system clock in minutes.

x = Watch();

SetWatch(hours, minutes) Function - RCX

Set the system watch to the specified number of hours and minutes. Hours must be a

constant between 0 and 23 inclusive. Minutes must be a constant between 0 and 59

inclusive.

SetWatch(3, 15); // set watch to 3:15

3.13 Scout Specific Features

SetScoutRules(motion, touch, light, time, fx) Function - Scout

Set the various rules used by the scout in stand-alone mode.

ScoutRules(n) Value - Scout

Return current setting for one of the rules. N should be a constant between 0 and 4.

x = ScoutRules(1); // get setting for rule #1

NQC Programmer's Guide

Page 64

SetScoutMode(mode) Function - Scout

Put the scout into stand-alone (0) or power (1) mode. As a programming call it really

only makes sense to put into stand-alone mode since it would already be in power

mode to run an NQC program.

SetEventFeedback(events) Function - Scout

Set which events should be accompanied by audio feedback.

SetEventFeedback(EVENT_1_PRESSED);

EventFeedback() Value - Scout

Return the set of events that have audio feedback.

x = EventFeedback();

SetLight(mode) Function - Scout

Control the Scout's LED. Mode must be LIGHT_ON or LIGHT_OFF.

SetLight(LIGHT_ON); // turn on LED

3.14 CyberMaster Specific Features

CyberMaster provides alternate names for the sensors: SENSOR_L, SENSOR_M, and

SENSOR_R. It also provides alternate names for the outputs: OUT_L, OUT_R, OUT_X.

Additionally, the two internal motors have tachometers, which measure 'clicks' and speed

as the motors turn. There are about 50 clicks per revolution of the shaft. The tachometers

can be used, for example, to create a robot which can detect if it has bumped into an

object without using any external sensors. The tachometers have maximum values of

32767 and do not differentiate between directions. They will also count up if the shaft is

turned by hand, including when no program is running.

Drive(motor0, motor1) Function - CM

Turns on both motors at the power levels specified. If a power level is negative, then

the motor will run in reverse. Equivalent to this code:

NQC Programmer's Guide

Page 65

SetPower(OUT_L, abs(power0));
SetPower(OUT_R, abs(power1));
if(power0 < 0)
 { SetDirection(OUT_L, OUT_REV) }
else
 { SetDirection(OUT_L, OUT_FWD) }
if(power1 < 0)
 { SetDirection(OUT_R, OUT_REV) }
else
 { SetDirection(OUT_R, OUT_FWD) }
SetOutput(OUT_L + OUT_R, OUT_ON);

OnWait(motors, n time) Function - CM

Turns on the motors specified, all at the same power level then waits for

the given time. The time is in 10ths of a second, with a maximum of 255 (or

25.5 seconds). Equivalent to this code:

SetPower(motors, abs(power));
if(power < 0)
 { SetDirection(motors, OUT_REV) }
else
 { SetDirection(motors, OUT_FWD) }
SetOutput(motors, OUT_ON);
Wait(time * 10);

OnWaitDifferent(motors, n0, n1, n2, time) Function - CM

Like OnWait(), except different power levels can be given for each motor.

ClearTachoCounter(motors) Function - CM

Resets the tachometer for the motor(s) specified.

TachoCount(n) Value - CM

Returns the current value of the tachometer for a specified motor.

TachoSpeed(n) Value - CM

Returns the current speed of the tachometer for a specified motor. The speed is fairly

constant for an unladen motor at any speed, with a maximum value of 90. (This will

NQC Programmer's Guide

Page 66

be lower as your batteries lose power!) The value drops as the load on the motor

increases. A value of 0 indicates that the motor is stalled.

ExternalMotorRunning() Value - CM

This is actually a measure of the current being drawn by the motor. The values

returned tends to fluctuate slightly, but are, on average, as follows for an unladen

motor:

0 motor is floating

1 motor is off

 <=7 motor is running at around this power level. This is where the value

fluctuates the most (probably related to the PWM method used to drive the motors.)

In any case, you should know what power level you set the motor to in the first place.

The value increases as the load on the motor increases, and a value between 260 and

300 indicates that the motor has stalled.

AGC() Value - CM

Return the current value of the automatic gain control on the RF receiver. This can

be used to give a very rough (and somewhat inaccurate) measure of the distance

between the CyberMaster and the RF transmitter.

x = AGC();

3.15 Spybotics Specific Features

SetLED(mode, value) Function - Spy

A single command, SetLED(mode, value), can be used to control all of the

different LEDs on the Spybotics brick. The function takes two arguments, a mode and

a value. The mode parameter selects which group of LEDs to control, and how they

should be affected.

NQC Programmer's Guide

Page 67

LED Mode Constants
LED_MODE_ON, LED_MODE_BLINK, LED_MODE_DURATION,
LED_MODE_SCALE, LED_MODE_SCALE_BLINK,
LED_MODE_SCALE_DURATION, LED_MODE_RED_SCALE,
LED_MODE_RED_SCALE_BLINK, LED_MODE_GREEN_SCALE,
LED_MODE_GREEN_SCALE_BLINK, LED_MODE_YELLOW,
LED_MODE_YELLOW_BLINK, LED_MODE_YELLOW_DURATION,
LED_MODE_VLL, LED_MODE_VLL_BLINK, LED_MODE_VLL_DURATION

The meaning of value parameter depends on the mode. Sometimes it is a mask of

which LEDs should be controlled (as with LED_MODE_ON). Sometimes it is a single

value that is used to determine how many LEDs to turn on (as with

LED_MODE_SCALE).

LED Value Constants
LED_RED1, LED_RED2, LED_RED3, LED_GREEN1, LED_GREEN2,
LED_GREEN3, LED_YELLOW, LED_ALL_RED, LED_ALL_GREEN,
LED_ALL_RED_GREEN, LED_ALL

Here is a short program that blinks all six of the top red/green LEDs.

task main()
{
 SetLED(LED_MODE_BLINK, LED_ALL_RED_GREEN);
 Wait(200);
}

LED(mode) Value - Spy

Return the value of the LED control registers. Use the LED Mode constants as the

parameter.

x = LED(LED_MODE_ON);

SetAnimation(number) Function - Spy

A more sophisticated way to control the top LEDs is to use animations. An animation

is a sequence of LED patterns. Each pattern is displayed for a certain amount of time,

then the next pattern is displayed. Animations are activated using the

SetAnimation(number) function. There are 8 pre-defined animations in ROM.

ROM Animation Constants
ANIMATION_SCAN, ANIMATION_SPARKLE, ANIMATION_FLASH,
ANIMATION_RED_TO_GREEN, ANIMATION_GREEN_TO_RED,

NQC Programmer's Guide

Page 68

ANIMATION_POINT_FORWARD, ANIMATION_ALARM,
ANIMATION_THINKING

Here is a short program that runs a ROM animation.

task main()
{
 SetAnimation(ANIMATION_SCAN);
 Wait(200);
}

ANIMATION Resource Declaration - Spy

It is also possible to define custom animations. This is done with a resource

declaration (a new NQC feature). The declaration must be done at the global level

(not within a task/sub/function), and must occur before the animation is used in the

program. An animation declaration looks like this:

ANIMATION name { data ... };

Where name is a name you pick for the animation, and data is a series of bytes that

determine the animation's appearance. The data bytes are interpreted in pairs, with the

first byte of each pair specifying a mask of the LEDs that should be turned on, and the

second byte determining how many 10ms ticks that pattern should be displayed for. A

pair of 255,0 causes the animation to loop continuously. You can also use the

following two special commands (in a comma-separated list) to define an animation:

Animation Commands
AnimateLED(led_mask, time)
RepeatAnimation()

Once the animation is declared, its name may be used as an argument to

SetAnimation(). Here is an example:

ANIMATION my_animation {
 AnimateLED(1, 10),
 AnimateLED(2, 10),
 AnimateLED(4, 10),
 AnimateLED(2, 10),
 RepeatAnimation()
};

task main()

NQC Programmer's Guide

Page 69

{
 SetAnimation(my_animation);
 Wait(500);
}

AnimateLED(led_mask, time) Animation Macro - Spy

User animations contain LED patterns. The led_mask parameter is a mask of the

LEDs that should be turned on (see the LED value constants defined above). The

time parameter is the number of 10 ms steps to display the pattern for, ranging from 1

to 255 (2.55 seconds).

AnimationLED(LED_RED1, 10)

RepeatAnimation() Animation Macro - Spy

Repeat the user animation from the beginning.

RepeatAnimation()

SOUNDEFFECT Resource Declaration - Spy

With Spybotics you can define up to 15 of your own sound effects using a resource

declaration. The declaration must be done at the global level (not within a

task/sub/function), and must occur before the sound effect is used in the program. A

sound effect declaration looks like this:

SOUNDEFFECT name { data ... };

Where name is a name you pick for the sound effect, and data is a series of bytes that

determine the sound effect sound. Use the following special commands (in a comma-

separated list) to define the sound effect.

User Sound Effect Commands
Gate(on, period)
GateOff()
Glide(freq1, freq2, time)
Vibrato(freq1, freq2, time)
WaitEffect(time)
FixedWaitEffect(time)
Tone(freq, time)
FixedTone(freq, time)
RepeatEffect()

NQC Programmer's Guide

Page 70

Once the sound effect is declared, its name may be used as an argument to

PlaySound(). Here is an example:

SOUNDEFFECT my_effect {
 Gate(1, 10),
 Glide(294, 660, 60),
 GateOff(),
 WaitEffect(50),
 Vibrato(294, 660, 60),
 FixedTone(500, 50),
 RepeatEffect()
};

task main()
{
 PlaySound(my_effect);
 Wait(500);
}

Gate(on, period) Sound Effect Macro - Spy

User sound effects can be changed by turning the sound on and off rapidly. The on

parameter is that portion of the period during which sound is output. The period

parameter is the length of the gate cycle in 10 ms steps from 1 to 255 (2.55 seconds).

Gate(1, 10)

GateOff() Sound Effect Macro - Spy

Stop gating the sound effect.

GateOff()

Glide(frequency1, frequency2, duration) Sound Effect Macro - Spy

User sound effects can contain sounds which glide from one frequency to another.

The two frequency parameters can range from 32 to 20000 Hz. The duration

parameter is the time to glide from the first frequency to the second in 10 ms steps

from 1 to 255 (2.55 seconds).

Glide(294, 660, 60)

NQC Programmer's Guide

Page 71

Vibrato(frequency1, frequency2, duration) Sound Effect Macro - Spy

User sound effects can contain vibratos, where the sound alternates rapidly between

two frequencies. The two frequency parameters can range from 32 to 20000 Hz. The

duration parameter is the number of 10 ms steps from 1 to 255 (2.55 seconds).

Vibrato(294, 660, 60)

WaitEffect(duration) Sound Effect Macro - Spy

User sound effects can contain wait periods. The duration parameter is the length of

the wait in 10 ms steps from 1 to 255 (2.55 seconds).

WaitEffect(60)

FixedWaitEffect(duration) Sound Effect Macro - Spy

User sound effects can contain fixed wait periods. The duration parameter is the

length of the wait in 10 ms steps from 1 to 255 (2.55 seconds). This wait period will

be unaffected by adjustments to the sound effect time.

FixedWaitEffect(60)

Tone(frequency, duration) Sound Effect Macro - Spy

User sound effects can contain simple tones. The frequency parameter is the tone to

be played, ranging from 32 to 20000 Hz. The duration parameter is the length of the

wait in 10 ms steps from 1 to 255 (2.55 seconds).

Tone(440, 60)

FixedTone(frequency, duration) Sound Effect Macro - Spy

User sound effects can contain fixed wait periods. The frequency parameter is the

tone to be played, ranging from 32 to 20000 Hz. The duration parameter is the length

of the wait in 10 ms steps from 1 to 255 (2.55 seconds). This wait period will be

unaffected by adjustments to the sound effect sound or time.

FixedTone(440, 60)

NQC Programmer's Guide

Page 72

RepeatEffect() Sound Effect Macro - Spy

Repeat the user sound effect from the beginning.

RepeatEffect()

EffectSound() Value - Spy

Return the value of the sound effect frequency adjustment register.

x = EffectSound(); // read the sound effect freq adj

EffectTime() Value - Spy

Return the value of the sound effect time adjustment register.

x = EffectTime(); // read the sound effect time adj

SetEffectSound(s) Function - Spy

Set the value of the sound effect frequency adjustment register. The parameter can

range from 0 to 255 where 100 = 1.0 * the frequency.

SetEffectSound(50); // cut freq in half (50%)

SetEffectTime(t) Function - Spy

Set the value of the sound effect time adjustment register. The parameter can range

from 0 to 255 where 100 = 1.0 * the duration.

SetEffectTime(50); // cut sound duration in half (50%)

ClearWorld() Function - Spy

Clear the contents of the world relationship table.

ClearWorld(); // empty world table

FindWorld(v, relationSource, criteria, threshold) Function - Spy

Sets variable v to the next entry in the world relationship table that matches the

criteria specified.

task main()
{
 int v = -1;

NQC Programmer's Guide

Page 73

 ClearWorld();
 FindWorld(v, SPY_RANGE, REL_GT, RANGE_NOWHERE);
 while (v != -1)
 {
 SetWorldNote(v, 40);
 SetTargetID(v);
 FindWorld(v, SPY_RANGE, REL_GT, RANGE_NOWHERE);
 }

Criteria Constants
REL_GT, REL_LT, REL_EQ, REL_NE

Target(n) Value - Spy

Return the value from the specified relation source for the current target.

x = Target(SPY_RANGE); // get the target range

Relation Source Constants
SPY_TARGETID, SPY_NOTE, SPY_LINKID, SPY_RANGE,
SPY_DIRECTION, SPY_ASPECT, SPY_INFO, SPY_SHORTID

SetTargetID(v) Function - Spy

Set the current target based on the value of v. Setting the target to TARGET_NONE

stops tracking.

int x = 5;
SetTargetID(x); // set the target ID

ID Constants
TARGET_NONE, ID_NONE, ID_CTRL1, ID_CTRL2, ID_CTRL3,
ID_CTRL4, ID_CTRL5, ID_CTRL6, ID_PC, ID_BOT_MIN, ID_BOT_MAX

SetTargetNote(v) Function - Spy

Set the current target's game note.

SetTargetNote(50); // set the target's note to 50

GetWorld(relationSource, target, v) Function - Spy

Set variable v to the value in the relationSource for the specified target.

GetWorld(SPY_RANGE, t, v); // set v to target t's range

GetWorldAspect(t, v) Function - Spy

Set variable v to the specified target's aspect.

NQC Programmer's Guide

Page 74

GetWorldAspect(t, v); // set v to target t's aspect

Aspect Constants
ASPECT_FRONT_LEFT, ASPECT_FRONT, ASPECT_FRONT_RIGHT,
ASPECT_BACK_RIGHT, ASPECT_BACK, ASPECT_BACK_LEFT

GetWorldDirection(t, v) Function - Spy

Set variable v to the value in the relationSource for the specified target.

GetWorldDirection(t, v); // set v to target t's direction

Direction Constants
DIRECTION_LEFT, DIRECTION_LEFT_OF_CENTER, DIRECTION_CENTER,
DIRECTION_RIGHT_OF_CENTER, DIRECTION_RIGHT

GetWorldLinkID(t, v) Function - Spy

Set variable v to the specified target's link ID.

GetWorldLinkID(t, v); // set v to target t's link ID

GetWorldNote(t, v) Function - Spy

Set variable v to the specified target's note.

GetWorldNote(t, v); // set v to target t's note

GetWorldRange(t, v) Function - Spy

Set variable v to the specified target's range.

GetWorldRange(t, v); // set v to target t's range

Range Constants
RANGE_NOWHERE, RANGE_ANYWHERE, RANGE_THERE, RANGE_HERE

GetWorldShortID(t, v) Function - Spy

Set variable v to the specified target's short ID.

GetWorldShortID(t, v); // set v to target t's short ID

SetWorldNote(t, v) Function - Spy

Set the specified target's note to the value v.

SetWorldNote(t, v); // set target t's note

NQC Programmer's Guide

Page 75

Pop(n) Function - Spy

Pop n entries off the stack.

Pop(2); // pop 2 entries off the stack

Push(v) Function - Spy

Push a value onto the stack

Push(v); // push the contents of variable v onto the stack

Stack(index) Value - Spy

Return the value at the specified stack index.

x = Stack(0); // set x to first stack entry

SetStack(index, v) Function - Spy

Set the stack entry specified by index to the value v.

SetStack(0, 4); // set the first stack entry to 4

TimerState(n) Value - Spy

Return the current running state of timer n.

x = TimerState(0); // set x to timer 0's state

SetTimerState(n, s) Function - Spy

Set the running state of the specified timer.

SetTimerState(0, TIMER_STOPPED); // stop timer 0

State Constants
TIMER_RUNNING, TIMER_STOPPED

EEPROM(n) Value - Spy

Return the value stored at the EEPROM location specified by index (either directly or

indirectly.

x = EEPROM(10); // read contents of EEPROM location 10

NQC Programmer's Guide

Page 76

SetEEPROM(i, d) Function - Spy

Set the EEPROM location specified by index (directly or indirectly) to the value d.

SetEEPROM(0, 5); // set EEPROM location 0 to 5
int i = 3;
SetEEPROM(i, TimerState(0)); // set EEPROM location 3

CurrentTaskID() Value - Spy

Return the current task ID.

x = CurrentTaskID(); // read current task ID

RxMessageLock() Value - Spy

Return the receive buffer locking value.

x = RxMessageLock(); // read the message locking value

SetRxMessageLock(lock) Function - Spy

Set the receive buffer locking value. To lock both IR and PC buffers use

MSG_IR+MSG_PC.

SetRxMessageLock(MSG_IR); // lock the IR message buffer

Receive Message Locking Constants
MSG_NONE, MSG_IR, MSG_PC

RxMessageIndex() Value - Spy

Return the index for the latest NewEntry event.

x = RxMessageIndex();

RxMessageChannel() Value - Spy

Return the channel containing the latest received message.

x = RxMessageChannel();

RxMessageID(channel) Value - Spy

Extract an ID from a received IR or PC message and convert it into an index. The

desired channel is MSG_IR or MSG_PC.

NQC Programmer's Guide

Page 77

x = RxMessageID(MSG_IR);

RxMessage(channel, byte) Value - Spy

Read the contents of a received IR or PC message (4 bytes total). The desired

channel is MSG_IR or MSG_PC. The desired byte is specified using MSG_INDEX,

MSG_COMMAND, MSG_HI_BYTE, or MSG_LO_BYTE.

if (RxMessage(MSG_IR, MSG_COMMAND) == COMMAND_CONTROLLER)
{
 x = RxMessage(MSG_IR, MSG_HI_BYTE);
}

PingControl(n) Value - Spy

Return the value of the ping control registers (n = 0..2).

x = PingControl(1); // read the current ping interval

PingData() Value - Spy

Return the current 8 bit information for ping messages

x = PingData();

SetPingData(d) Function - Spy

Set the 8 bit information for ping messages.

SetPingData(55); // send the value 55 when pinging

PingInterval() Value - Spy

Return the current ping interval.

x = PingInterval();

SetPingInterval(interval) Function - Spy

Set the ping interval in 10ms steps. Setting the interval to zero will disable pinging.

SetPingInterval(0); // disable pings

PingID() Value - Spy

Return the Spybotics ping ID number.

NQC Programmer's Guide

Page 78

x = PingID(); // x = my ping ID

BeaconControl(n) Value - Spy

Return the value of the beacon control registers (n = 0..3).

x = BeaconControl(1); // read the RC receive channel

LinkID() Value - Spy

Return the link ID (0-7; 0 = no link, 1-6 control unit ID, 7 = PC).

x = LinkID(); // read link ID

ID Constants
ID_NONE, ID_CTRL1, ID_CTRL2, ID_CTRL3, ID_CTRL4, ID_CTRL5,
ID_CTRL6, ID_PC

RCRxChannel() Value - Spy

Return the RC receive channel.

x = RCRxChannel(); // read RC receive channel

SetRCRxChannel(channel) Function - Spy

Set the RC receive channel.

SetRCRxChannel(RC_CHANNEL_1);

RC Channel Constants
RC_CHANNEL_BROADCAST, RC_CHANNEL_1, RC_CHANNEL_2,
RC_CHANNEL_3, RC_CHANNEL_DISABLED

RCTxChannel() Value - Spy

Return the RC transmit channel.

x = RCTxChannel(); // read RC transmit channel

SetRCTxChannel(channel) Function - Spy

Set the RC transmit channel.

SetRCTxChannel(RC_CHANNEL_1);

RCTxMode() Value - Spy

Return the current RC transmit mode.

NQC Programmer's Guide

Page 79

x = RCTxMode(); // read RC transmit mode

SetRCTxMode(mode) Function - Spy

Set the RC transmit mode.

SetRCTxMode(RCTXMODE_SINGLE_SHOT);

RC Tx Mode Constants
RCTXMODE_SINGLE_SHOT, RCTXMODE_CONTINUOUS

StartTask(task) Function - Spy

Start a task by numeric value rather than by name.

StartTask(9); // start task number 9

StopTask(task) Function - Spy

Stop a task by numeric value rather than by name.

StopTask(9); // stop task number 9

Action(nSound, nDisplay, nMovement, nRepeat, nTime) Function - Spy

Built-in ROM subroutine number 44. This subroutine plays any combination of

sound, LED animation, and movement, like a multimedia presentation. nSound is the

sound to play (0-79, -1 means no sound). nDisplay is the LED animation to play (0-

15, -1 means no animation). nMovement is the Spybot motion (see BasicMove,

FancyMove, RandomMove, SlowDownMove, and SpeedUpMove) with -1 meaning

no movement. nRepeat is the number of times to repeat the motion. nTime is the

time to wait if nMovement equals -1, otherwise it is passed on to the movement

subroutines.

Action(SOUND_GEIGER, ANIMATION_FLASH, -1, 0, 300);

Disp(display) Function - Spy

Built-in ROM subroutine number 42. This subroutine displays one of the LED

animations. Passing an undefined user animation will turn the display off (8-15).

Disp(ANIMATION_FLASH);

NQC Programmer's Guide

Page 80

BasicMove(move, time) Function - Spy

Built-in ROM subroutine number 43. This subroutine performs the requested motion

for the specified duration. The motors are not floated or braked and motor power is

not restored on exit.

BasicMove(MOVE_BASIC_AVOID_LEFT, 500);

Basic Motion Constants
MOVE_BASIC_FORWARD, MOVE_BASIC_BACKWARD,
MOVE_BASIC_SPIN_LEFT, MOVE_BASIC_SPIN_RIGHT,
MOVE_BASIC_TURN_LEFT, MOVE_BASIC_TURN_RIGHT,
MOVE_BASIC_AVOID_LEFT, MOVE_BASIC_AVOID_RIGHT,
MOVE_BASIC_REST, MOVE_BASIC_STOP

FancyMove(move, time) Function - Spy

Built-in ROM subroutine number 47. This subroutine performs the requested motion

for the specified duration. The motors are not floated or braked and motor power is

not restored on exit.

FancyMove(MOVE_FANCY_ZIGZAG, 500);

Fancy Motion Constants
MOVE_FANCY_ZIGZAG, MOVE_FANCY_SHAKE, MOVE_FANCY_SCAN,
MOVE_FANCY_STEP, MOVE_FANCY_STEP_BACK, MOVE_FANCY_SEARCH,
MOVE_FANCY_FAKE_LEFT, MOVE_FANCY_RAKE_RIGHT,
MOVE_FANCY_BUG_FORWARD, MOVE_FANCY_LAZY, MOVE_FANCY_WALK,
MOVE_FANCY_WALK_BACK, MOVE_FANCY_DANCE

RandomMove(move, time) Function - Spy

Built-in ROM subroutine number 46. This subroutine performs the requested motion

for the specified duration. The motors are not floated or braked and motor power is

not restored on exit.

RandomMove(MOVE_RANDOM_FORWARD, 500);

Random Motion Constants

NQC Programmer's Guide

Page 81

MOVE_RANDOM_FORWARD, MOVE_RANDOM_BACKWARD,
MOVE_RANDOM_SPIN_LEFT, MOVE_RANDOM_SPIN_RIGHT,
MOVE_RANDOM_TURN_LEFT, MOVE_RANDOM_TURN_RIGHT,
MOVE_RANDOM_REST

SlowDownMove(move, time) Function - Spy

Built-in ROM subroutine number 48. This subroutine performs the requested motion

for the specified duration. The motors are not floated or braked and motor power is

not restored on exit.

SlowDownMove(MOVE_SLOWDOWN_FORWARD, 500);

SlowDown Motion Constants
MOVE_SLOWDOWN_FORWARD, MOVE_SLOWDOWN_BACKWARD,
MOVE_SLOWDOWN_SPIN_LEFT, MOVE_SLOWDOWN_SPIN_RIGHT

SpeedUpMove(move, time) Function - Spy

Built-in ROM subroutine number 49. This subroutine performs the requested motion

for the specified duration. The motors are not floated or braked and motor power is

not restored on exit.

SpeedUpMove(MOVE_SPEEDUP_FORWARD, 500);

SpeedUp Motion Constants
MOVE_SPEEDUP_FORWARD, MOVE_SPEEDUP_BACKWARD,
MOVE_SPEEDUP_SPIN_LEFT, MOVE_SPEEDUP_SPIN_RIGHT

Sum2Mem(mem, value) Function - Spy

Built-in ROM subroutine number 50. This subroutine adds value to a 2-byte location

in EEPROM. The value is stored low byte first. No overflow checking is performed.

Sum2Mem(50, 400);

Sum4Mem(mem, value) Function - Spy

Built-in ROM subroutine number 51. This subroutine adds value to a 4-byte location

in EEPROM. The value is stored least significant byte first. No overflow checking is

performed.

Sum4Mem(50, 400);

NQC Programmer's Guide

Page 82

SendAllRangeMessage (nMessage, nData) Function - Spy

Built-in ROM subroutine number 38. This subroutine sends nMessage to all Spybots

in the world relation table that are in the here, there, or anywhere zones with the

actual Spybot range as the high byte of each message.

SendAllRangeMessage(50, 40);

SendRCXMessage (nMessage) Function - Spy

Built-in ROM subroutine number 37. This subroutine sends an RCX message at 2400

baud with bi-phase encoding and sum checksum. These messages can be received by

an RCX or Scout.

SendRCXMessage(50);

SendSpybotMessage(nIndex, nCmd, nHiByte, nLoByte) Function - Spy

Built-in ROM subroutine number 34. This subroutine sends a message to a Spybot.

If nIndex is a controller or PC then it does nothing. nIndex is the index of the Spybot

in the world relation table (0-15), INDEX_LINKCAST, or INDEX_BROADCAST.

SendSpybotMessage(INDEX_LINKCAST, 50, 0, 10);

3.16 Swan Specific Features

SetMotorPowerSigned(const int motor, const int &v) Function - Swan

Set the power of a motor to the specified signed value.

SetMotorPowerSigned(MTR_A, 10);

The motor can be specified using the following constants.

Motor Constant Meaning
MTR_A output A
MTR_B output B
MTR_C output C
MTR_D virtual output D
MTR_E virtual output E
MTR_F virtual output F

NQC Programmer's Guide

Page 83

There are additional constants for the motor power functions and values.

Motor Power Direction Meaning
MPD_FWD foward
MPD_REV reverse
MPD_FLOAT float
MPD_OFF off

Motor State Meaning
MS_FLOAT float state
MS_BRAKE brake state
MS_FWD forward state
MS_REV reverse state

Motor Forward Power Meaning
MTR_FWD_POWER_1 forward at power level 1
MTR_FWD_POWER_2 forward at power level 2
MTR_FWD_POWER_3 forward at power level 3
MTR_FWD_POWER_4 forward at power level 4
MTR_FWD_POWER_5 forward at power level 5
MTR_FWD_POWER_6 forward at power level 6
MTR_FWD_POWER_7 forward at power level 7
MTR_FWD_POWER_8 forward at power level 8

Motor Reverse Power Meaning
MTR_REV_POWER_1 reverse at power level 1
MTR_REV_POWER_2 reverse at power level 2
MTR_REV_POWER_3 reverse at power level 3
MTR_REV_POWER_4 reverse at power level 4
MTR_REV_POWER_5 reverse at power level 5
MTR_REV_POWER_6 reverse at power level 6
MTR_REV_POWER_7 reverse at power level 7
MTR_REV_POWER_8 reverse at power level 8

Motor Float Power Meaning
MTR_FLOAT_POWER_1 float at power level 1
MTR_FLOAT_POWER_2 float at power level 2
MTR_FLOAT_POWER_3 float at power level 3
MTR_FLOAT_POWER_4 float at power level 4
MTR_FLOAT_POWER_5 float at power level 5
MTR_FLOAT_POWER_6 float at power level 6
MTR_FLOAT_POWER_7 float at power level 7
MTR_FLOAT_POWER_8 float at power level 8

Motor Brake Power Meaning
MTR_BRAKE_POWER_1 brake at power level 1
MTR_BRAKE_POWER_2 brake at power level 2

NQC Programmer's Guide

Page 84

MTR_BRAKE_POWER_3 brake at power level 3
MTR_BRAKE_POWER_4 brake at power level 4
MTR_BRAKE_POWER_5 brake at power level 5
MTR_BRAKE_POWER_6 brake at power level 6
MTR_BRAKE_POWER_7 brake at power level 7
MTR_BRAKE_POWER_8 brake at power level 8

MotorPowerSigned(const int motor) Value - Swan

Read the signed power setting of a motor.

x = MotorPowerSigned(MTR_A);

SetMotorBrakePower(const int motor, const int &v) Function - Swan

Set the brake power of a motor to the specified value.

SetMotorBrakePower(MTR_A, 10);

MotorBrakePower(const int motor) Value - Swan

Read the brake power setting of a motor.

x = MotorBrakePower(MTR_A);

SetMotorPower8(const int motor, const int &v) Function - Swan

Set the power of a motor to the specified value (using a scale from 0 to 7).

SetMotorPower8(MTR_A, 7);

MotorPower8(const int n) Value - Swan

Read the power setting of a motor (using a scale from 0 to 7).

x = MotorPower8(MTR_A);

SetMotorPower128(const int motor, const int &v) Function - Swan

Set the power of a motor to the specified value (using a scale from 0 to 127).

SetMotorPower128(MTR_A, 100);

MotorPower128(const int n) Value - Swan

Read the power setting of a motor (using a scale from 0 to 127).

x = MotorPower128(MTR_A);

NQC Programmer's Guide

Page 85

SetEventType(const int n, const int &v) Function - Swan

Set the event type of event n to the type specified by v.

SetEventType(MyEvent, EVENT_TYPE_PRESSED);

EventType(const int n) Value - Swan

Read the event type of an event.

x = EventType(MyEvent);

SetEventSrc(const int n, const int &v) Function - Swan

Set the event source of event n to the source specified by v.

SetEventSrc(MyEvent, EST_SENSOR_1);

Event Source Meaning
EST_SENSOR_1 sensor 1 source
EST_SENSOR_2 sensor 2 source
EST_SENSOR_3 sensor 3 source
EST_TIMER_1 timer 1 source
EST_TIMER_2 timer 2 source
EST_TIMER_3 timer 3 source
EST_TIMER_4 timer 4 source
EST_LAST_IR_MSG IR msg source
EST_COUNTER_1 counter 1 source
EST_COUNTER_2 counter 2 source
EST_COUNTER_3 counter 3 source
EST_USER_EVENT_0 user event source
EST_USER_EVENT_1 user event source
EST_USER_EVENT_2 user event source
EST_USER_EVENT_3 user event source
EST_USER_EVENT_4 user event source
EST_VIRTUAL_MOTOR virtual motor source
EST_VIRTUAL_SENSOR virtual sensor source
EST_WAIT_FOR_MSG IR msg source
EST_INFRARED_STATUS IR msg source
EST_SENSOR_UNUSED sensor source

EventSrc(const int n) Value - Swan

Read the event source of an event.

x = EventSrc(MyEvent);

There are also constants for event states

NQC Programmer's Guide

Page 86

Event Source Meaning
ES_BELOW_LOWER below lower threshold
ES_BETWEEN between lower and upper thresholds
ES_ABOVE_UPPER above upper threshold
ES_UNDETERMINED undetermined state

SetEventCounts(const int n, const int &v) Function - Swan

Set the event count of event n to the count specified by v.

SetEventCounts(MyEvent, 10);

EventCounts(const int n) Value - Swan

Read the event counts of an event.

x = EventCounts(MyEvent);

ResetMSTimer(const int n) Function - Swan

Set the specified 1 ms timer back to zero.

ResetMSTimer(T1);

MSTimer(const int n) Value - Swan

Read the specified 1 ms timer value.

x = MSTimer(T1); // get the value of timer 1

WaitMS(const int &v) Function - Swan

Wait for the specified number of milliseconds.

WaitMS(T1);

System(const int n) Value - Swan

Read the specified system value.

x = System(SYS_BATTERY_LEVEL); // get the system value

SetSystem(const int n, const int &v) Function - Swan

Set the system item to the specified value.

SetSystem(SYS_OPCODES_PER_TIMESLICE, 10);

NQC Programmer's Guide

Page 87

System Constants Meaning
SYS_BATTERY_LEVEL battery level
SYS_DEBUG_TASK_MODE debug task mode
SYS_MEMORY_MAP_ADDRESS memory map address
SYS_CURRENT_TASK current task
SYS_SERIAL_LINK_STATUS serial link status
SYS_OPCODES_PER_TIMESLICE opcodes per timeslice
SYS_MOTOR_TRANSITION_DELAY motor transition delay
SYS_SENSOR_REFRESH_RATE sensor refresh rate
SYS_EXPANDED_RC_MESSAGES expanded remote control

messages
SYS_LCD_REFRESH_RATE LCD refresh rate
SYS_NO_POWER_DOWN_ON_AC power down while on AC
SYS_DEFAULT_TASK_STACK_SIZE default task size
SYS_TASK_ACQUIRE_PRIORITY task acquire priority
SYS_TRANSMITTER_RANGE transmitter range
SYS_FLOAT_DURING_INACTIVE_PWM float motors during inactive

PWM
SYS_ROT_ERRORS_COUNT rotation sensor errors count
SYS_ROT_DEBOUNCED_GLITCHES rotation sensor debounce glitches
SYS_PREAMBLE_SIZE preamble size
SYS_UNSOLICITED_MESSAGE unsolicited messages
SYS_EXPANDED_SUBROUTINES expanded subroutines
SYS_POWER_DOWN_DELAY power down delay
SYS_WATCH_FORMAT watch format
SYS_SENSOR_MISSED_CONVERSIONS sensor missed conversions
SYS_IGNORE_MESSAGES_CPU ignore messages CPU
SYS_COMM_ERRORS_TIMEOUT count of timeout errors
SYS_COMM_ERRORS_PARITY count of parity errors
SYS_COMM_ERRORS_FRAMING count of framing errors
SYS_COMM_ERRORS_OVERRUN count of overrun errors
SYS_INTER_CHAR_TIMEOUT inter-character timeout
SYS_TASK_SCHEDULING_PRIORITY task scheduling priority
SYS_VOLUME volume level
SYS_SOUND_PLAYING sound playing state
SYS_PLAY_SOUNDS enable/disable sound playing
SYS_QUEUED_SOUND_COUNT count of sounds waiting to be

played
SYS_SENSOR_STARTUP_DELAY sensor startup delay
SYS_SENSOR_DELAY_CYCLES sensor delay cycles
SYS_SENSOR_REFRESH_STATE sensor refresh state
SYS_SENSOR_SCAN_COUNT sensor scan count
SYS_DATALOG_SIZE datalog size

ImmediateBatteryLevel() Value - Swan

Read the immediate battery level.

NQC Programmer's Guide

Page 88

x = ImmediateBatteryLevel();

DebugTaskMode() Value - Swan

Read the debug task mode.

x = DebugTaskMode();

MemoryMapAddress() Value - Swan

Read the memory map address.

x = MemoryMapAddress();

CurrentTask() Value - Swan

Read the current task number.

x = CurrentTask();

SerialLinkStatus() Value - Swan

Read the serial link status.

x = SerialLinkStatus();

Serial Link Status Constants Meaning
SLS_WAIT_FOR_MSG waiting for message
SLS_RECEIVING_MSG receiving message
SLS_TRANSMITTING transmitting
SLS_UNKNOWN unknown

OpcodesPerTimeslice() Value - Swan

Read the number of opcodes to execute per timeslice.

x = OpcodesPerTimeslice();

SetOpcodesPerTimeslice(const int &v) Function - Swan

Set the system item to the specified value.

SetOpcodesPerTimeslice(10);

MotorTransitionDelay() Value - Swan

Read the number of milliseconds to delay when changing motor direction.

NQC Programmer's Guide

Page 89

x = MotorTransitionDelay();

SetMotorTransitionDelay(const int &v) Function - Swan

Set the motor transition delay to the specified value.

SetMotorTransitionDelay(10);

SensorRefreshRate() Value - Swan

Read the sensor refresh rate.

x = SensorRefreshRate();

SetSensorRefreshRate(const int &v) Function - Swan

Set the sensor refresh rate to the specified value.

SetSensorRefreshRate(10);

ExpandedRemoteMessages() Value - Swan

Read a boolean value indicating whether or not to support expanded remote control

messages.

x = ExpandedRemoteMessages(); // 0 or 1

SetExpandedRemoteMessages(const int &v) Function - Swan

Enable or disable expanded remote control messages.

SetExpandedRemoteMessages(false);

LCDRefreshRate() Value - Swan

Read the LCD refresh rate.

x = LCDRefreshRate();

SetLCDRefreshRate(const int &v) Function - Swan

Set the LCD refresh rate.

SetLCDRefreshRate(10);

NQC Programmer's Guide

Page 90

NoPowerDownOnAC() Value - Swan

Read a boolean value specifying whether or not to power down while running on AC

power.

x = NoPowerDownOnAC();

SetNoPowerDownOnAC(const int &v) Function - Swan

Enable or disable power down while running on AC power.

SetNoPowerDownOnAC(false);

DefaultStackSize() Value - Swan

Read the default stack size.

x = DefaultStackSize();

SetDefaultStackSize(const int &v) Function - Swan

Set the default stack size.

SetDefaultStackSize(10);

TaskAcquirePriority() Value - Swan

Read the task acquire priority level.

x = TaskAcquirePriority();

SetTaskAcquirePriority(const int &v) Function - Swan

Set the task acquire priority level.

SetTaskAcquirePriority(10);

TransmitterRange() Value - Swan

Read the transmitter range value.

x = TransmitterRange();

NQC Programmer's Guide

Page 91

FloatDuringInactivePWM() Value - Swan

Read a boolean value specifying whether or not to float motors during inactive pulse

width modulation.

x = FloatDuringInactivePWM();

SetFloatDuringInactivePWM(const int &v) Function - Swan

Enable or disable floating the motors during inactive pulse width modulation.

SetFloatDuringInactivePWM(false);

RotErrorsCount() Value - Swan

Read the rotation sensor errors count.

x = RotErrorsCount();

RotDebouncedGlitches() Value - Swan

Read the rotation sensor debounced glitches.

x = RotDebouncedGlitches();

SystemPreambleSize() Value - Swan

Read the system preamble size.

x = SystemPreambleSize();

SetSystemPreambleSize(const int &v) Function - Swan

Set the system preamble size.

SetSystemPreambleSize(10);

UnsolicitedMessages() Value - Swan

Read a boolean value specifying whether or not to accept unsolicted messages.

x = UnsolicitedMessages();

NQC Programmer's Guide

Page 92

ExpandedSubroutines() Value - Swan

Read a boolean value specifying whether or not to allow an expanded number of

subroutines.

x = ExpandedSubroutines();

SetExpandedSubroutines(const int &v) Function - Swan

Enable or disable support for an expanded number of subroutines.

SetExpandedSubroutines(false);

PowerDownDelay() Value - Swan

Read the power down delay.

x = PowerDownDelay();

WatchFormat() Value - Swan

Read the watch format.

x = WatchFormat();

SetWatchFormat(const int &v) Function - Swan

Set the watch format.

SetWatchFormat(10);

Watch Format Constants Meaning
FMT_HHMM hours and minutes
FMT_MMSS minutes and seconds
FMT_MSSTENTHS minutes, seconds, and tenths of seconds

MissedSensorADConversions() Value - Swan

Read the number of missed sensor analog to digital conversions.

x = MissedSensorADConversions();

IgnoreMessagesCPU() Value - Swan

Read a boolean value specifying whether or not to ignore CPU messages.

x = IgnoreMessagesCPU();

NQC Programmer's Guide

Page 93

CommErrorsTimeout() Value - Swan

Read the number of communication timeout errors.

x = CommErrorsTimeout();

CommErrorsParity() Value - Swan

Read the number of communication parity errors.

x = CommErrorsParity();

CommErrorsFraming() Value - Swan

Read the number of communication framing errors.

x = CommErrorsFraming();

CommErrorsOverrun() Value - Swan

Read the number of communication overrun errors.

x = CommErrorsOverrun();

InterCharTimeout() Value - Swan

Read the inter-character timeout value.

x = InterCharTimeout();

SetInterCharTimeout(const int &v) Function - Swan

Set the inter-character timeout value.

SetInterCharTimeout(10);

TaskSchedulingPriority() Value - Swan

Read the task scheduling priority.

x = TaskSchedulingPriority();

SetTaskSchedulingPriority(const int &v) Function - Swan

Set the task scheduling priority.

SetTaskSchedulingPriority(10);

NQC Programmer's Guide

Page 94

Volume() Value - Swan

Read the system volume level.

x = Volume();

SetVolume(const int &v) Function - Swan

Set the system volume level. The maximum volume level is MAX_VOLUME.

SetVolume(10);

SoundActive() Value - Swan

Read a boolean value specifying whether or not a sound is currently playing.

x = SoundActive();

PlaySounds() Value - Swan

Read a boolean value specifying whether or not to allow sound playing.

x = PlaySounds();

SetPlaySounds(const int &v) Function - Swan

Enable or disable support for playing sounds.

SetPlaySounds(false);

QueuedSoundCount() Value - Swan

Read the number of sounds currently waiting to be played.

x = QueuedSoundCount();

SensorStartupDelay() Value - Swan

Read the sensor startup delay.

x = SensorStartupDelay();

SetSensorStartupDelay(const int &v) Function - Swan

Set the sensor startup delay.

SetSensorStartupDelay(10);

NQC Programmer's Guide

Page 95

SensorDelayCycles() Value - Swan

Read the number of sensor delay cycles.

x = SensorDelayCycles();

SensorRefreshState() Value - Swan

Read the sensor refresh state.

x = SensorRefreshState();

SensorScanCount() Value - Swan

Read the sensor scan count.

x = SensorScanCount();

DatalogSize() Value - Swan

Read the datalog size.

x = DatalogSize();

IntrinsicIndGlobal(const int n) Value - Swan

Access the value of an intrinsic indirectly.

x = IntrinsicIndGlobal(15);

GlobalVar(const int &n) Value - Swan

Read or write the value of a global variable (either directly or indirectly).

x = GlobalVar(y);

StackAddress(const int task) Value - Swan

Read the stack address of the specified task.

x = StackAddress(1);

StackSize(const int task) Value - Swan

Read the size of the stack for the specified task.

x = StackSize(1);

NQC Programmer's Guide

Page 96

ClearAll(const int &v) Function - Swan

Clear the specified items. The constants can be added together to clear multiple items

at once.

ClearAll(CLR_TIMERS);

ClearAll Constants Meaning
CLR_TIMERS clear all timers
CLR_INPUTS clear all inputs
CLR_VARIABLES clear all variables
CLR_TASK_STACK clear all task stacks
CLR_EVENTS clear all events
CLR_BREAKPOINTS clear all breakpoints
CLR_DATALOG clear the datalog

BitSet(const int &result, const int &operand) Function - Swan

Set the bit in the result specified by the operand.

BitSet(x, 0x01);

BitClear(const int &result, const int &operand) Function - Swan

Clear the bit in the result specified by the operand.

BitClear(x, 0x01);

Negate(const int &result, const int &operand) Function - Swan

Negate the bits in the result specified by the operand.

Negate(x, 0x01);

NQC Programmer's Guide

Page 97

4 Technical Details

This section explains some of the low-level features of NQC. In general, these

mechanisms should only be used as a last resort since they may change in future releases.

Most programmers will never need to use the features described below - they are mainly

used in the creation of the NQC API file.

4.1 The asm statement

The asm statement is used to define almost all of the NQC API calls. The syntax of the

statement is:

asm { item1, item2 ... itemN }

Where an item is one of the following

constant_expression

$ expression

$ expression : restrictor

The statement simply emits the values of each of the items as raw bytecodes. Constant

items are the simplest - they result in a single byte of raw data (the lower 8 bits of the

constant value). For example, the API file defines the following inline function:

void ClearMessage() { asm { 0x90 }; }

Whenever ClearMessage() is called by a program, the value 0x90 is emitted as a

bytecode.

Many API functions take arguments, and these arguments must be encoded into an

appropriate effective address for the bytecode interpreter. In the most general case, an

effective address contains a source code followed by a two byte value (least significant

byte first). Source codes are explained in the SDK documentation available from LEGO.

However, it is often desirable to encode the value in some other manner - for example to

use only a single byte value after the source code, omit the source code itself, or only

allow certain sources to be used. A restrictor may be used to control how the effective

address is formatted. A restrictor is a 32 bit constant value. The lower 24 bits form a

bitmask indicating which sources are valid (bit 0 should be set to allow source 0, etc).

NQC Programmer's Guide

Page 98

The upper 8 bits include formatting flags for the effective address. Note that when no

restrictor is specified, this is the same as using a restrictor of 0 (no restriction on sources,

and a format of source followed by two value bytes). The API file defines the following

constants which can be used to build restrictors:

#define __ASM_SMALL_VALUE 0x01000000

#define __ASM_NO_TYPE 0x02000000

#define __ASM_NO_LOCAL 0x04000000

#if __RCX==2

 // no restriction

 #define __ASM_SRC_BASIC 0

 #define __ASM_SRC_EXT 0

#else

 #define __ASM_SRC_BASIC 0x000005

 #define __ASM_SRC_EXT 0x000015

#endif

The __ASM_SMALL_VALUE flag indicates that a one-byte value should be used instead of

a two-byte value. The __ASM_NO_TYPE flag indicates that the source code should be

omitted. The __ASM_NO_LOCAL flag specifies that local variables are not a legal source

for the expression. Note that the RCX2 firmware is less restrictive than the other

interpreters, thus the definition of __ASM_SRC_BASIC and __ASM_SRC_EXT are relaxed

in the RCX2 case. The API definition file for NQC contains numerous examples of using

restrictors within asm statement. If you are using a command-line version of NQC, you

can emit the API file by typing the following command:

nqc -api

4.2 Data Sources

The bytecode interpreters use different data sources to represent the various kinds of data

(constants, variables, random numbers, sensor values, etc). The specific sources depend

NQC Programmer's Guide

Page 99

to a certain extent on which device you are using and are described in the SDK

documentation available from LEGO.

NQC provides a special operator to represent a data source:

@ constant

The value of this expression is the data source described by the constant. The lower 16

bits of the constant represent the data value, and the next 8 bits are the source code. For

example, the source code for a random number is 4, so the expression for a random

number between 0 and 9 would be:

@0x40009

The NQC API file defines a number of macros which make the use of the @ operator

transparent to the programmer. For example, in the case of random numbers:

#define Random(n) @(0x40000 + (n))

Note that since source 0 is the global variable space, the global storage locations can be

referenced by number: @0 refers to storage location 0. If for some reason you need

explicit control over where variables are being stored, then you should use #pragma

reserve to instruct NQC not to use those storage locations, and then access them

manually with the @ operator. For example, the following code snippet reserves location

0 and creates a macro for it called x.

#pragma reserve 0

#define x (@0)

Because of how sensors have been implemented it is necessary to convert the sensor's

data source into a sensor index for use in macros such as SensorValueRaw(). The

__sensor expression can be used to do this:

#define SensorValueRaw(n) @(0xc0000 + (__sensor(n)))

